intal.

|A-64 System Abstraction Layer
Specification

January 2000

Order Number: 245359-001

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 1A-64 processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000
*Third-party brands and names are the property of their respective owners.

intgl.

Contents

1 Introduction
1.1 (0] 0] =Tt 1)Y= PR
1.2 FIrMWAare MOooiiiiiiiiiie e
1.3 System Abstraction Layer Overview...

14 Firmware Entrypoints
14.1 Processor Abstraction Layer ENtrypointsccccoovevevvieeeniieesiiie s 1-5
1.4.2 System Abstraction Layer Entrypoints ..1-6
1.4.3 Operating System Entrypoints 17
15 Related DOCUMENLESccviiiiiiiiiii ittt 1-7
2 Platform Requirements
2.1 Firmware Address Space
22 PAL/SAL ROM Space..........cccocuvenee
2.3 Simplified Firmware Address Map
2.4 Firmware Organization using Protected Boot Block
24.1 Firmware Componentsccccevvvveevineennenen. .
25 Firmware Interface Tablecovi i
2.6 Resources Required for PC-AT* Compatibilityccovoeeeiiiiiiiin e
2.7 Chipset and Shadowing Requirementsccceccuveeene.
2.8 Platform Support for Variant Architectural Features
2.9 Platform Considerations Related to Geographic LOCationccoceeeviieriieeeennineenns 2-10
2.10 Non-volatile Memory Requirements .
2.11 Miscellaneous Platform ReqUIrEMENtScoouiiiiiieiiieee e 2-11
3 Boot Sequence 3-1
3.1 Overview of the Code Flow after Hard ReSetccceeeiiiiiiiiiiiiiiciicic e 3-1
3.11 Code FIoW during RECOVETYeveiiiiiiiiiiie ettt 3-2
3.1.2 Normal Code Flow
3.2 SAL_RESET ...ccooiiiviiiiiiiceiece
321 Initialization Phase
3.2.2 Bootstrap Processor Identification Phase in an MP Configuration
3.23 Platform Initialization Phase
324 OS Boot Phase..........cccceeeee.
3.25 Firmware to OS Loader Handoff State ..
3.2.6 OS_BOOT_RENDEZ
3.2.7 SAL System Table..........
3.3 IA-64 OS Loader Requirements .
331 =10 L = U o [T USRS
332 Memory Management ReSOUICes USAQEccovvurririeeriiiiieeeeeeniieeeeeeenes
3.33 Other Restrictions 0N the OS........ccociiiiiiiiiiie e
4 Machine Checks
4.1 SAL _CHECK ..o
411 SAL_CHECK Processing Details
4.2 Corrected Maching ChECKScviiiiiiiiiiie e
43 OS_MCA . et bt h et bbb eh et b e be e be e eh b b e eabeenneenen
4.4 Procedures used in Machine Check Handling... .
4.5 Machine Checks in MP ConfiQUuIationS...........ccuuiiiiiiiiiiiie et

IA-64 System Abstraction Layer Specification iii

4.6 OS_MCA HaNORf SEAEcooiiiiiiiie et e e ee e
4.6.1 Return from OS_MCA ProCedure.........cc.uviiiieiiiiiiiie e

Initialization Event

5.1 SAL L INIT ettt h ettt et e a e e e b e e ek b e e sb e eab e e b e e ehbe e s be e eabe e neeerbeenreeene
5.2 OS_INIT ..ot
5.3 OS_INIT Handoff State
54 Return from OS_INIT Procedure
55 LY L LN I ST U o] o L] o PP UPUPPURTOE

Platform Management Interruptions
6.1 SALE_ PMI OVEIVIBWeeiiiiiiiiiiiiie ettt ee e st ta e e sttt te e e e e sbe e e e e e s e satbeeeaeaannsanaeaaaanns
6.2 SALE_PMI Initialization
6.3 SALE_PMI Processing
6.4 Special Considerations for Multiprocessor Configurations

IA-32 Support
7.1 IA-32 SUPPOI MOAEL.ttt e s e ee s
7.2 IA-32 Support Requirements....................
7.2.1 Resources Supported by SAL
7.2.2 Overview of IA-32 Support Layer Functionality

7.2.3 IA-32 Instruction Usage Guidelines......................

7.2.4 1A-32 SUPPOrt ENVIFONMENTeiiiiiiiiiieii et

7.2.5 1A-32 Interruption Handler SUPPOItcoveiiiiiiiie e
Calling Conventions 8-1
8.1 SAL Calling CONVENTIONScoiiiiiiiiiiee ettt ee ettt e e e et ae e e e s e sabae e e e e e aneanaeaaaans 8-1

8.11 Definition Of TEIMScoiiiiiiiiiee e 8-1

8.1.2 Processor State

8.1.3 SYSIEM REQISIEIS ..ottt et e e e siabr e e e e e nnees

8.1.4 GENEIAl REISLEIS ...oiiiiiiiiiie ettt ettt e e sttt e e e e ennaeee

8.1.5 Floating-point Registers

8.1.6 Predicate REQISIEISeiiii e

8.1.7 Branch REQISIEIS ...t

8.1.8 Application Special Registers...

8.1.9 Parameter BUfEISoeiiiii e
8.2 Software Interface Conventions for SAL Proceduresoccveeeeieiiiiieeeeeesiiiiieeeeene 8-5

8.2.1 Control Flow of the SAL Interface

8.2.2 Calling Architected/OEM SAL Functions
SAL Procedures

9.1 SAL RUNIME SEIVICES OVEIVIEW.......uviiiiriieeiiiee ettt s s s ee e
9.1.1 Invoking SAL Runtime Services in Virtual Mode ..
9.1.2 Access to Resources not Supported by OS.

9.2 SAL ProCEUIE SUIMMAIY ...ceiiiiiiiieeeeaattiieeaeassiitteeaeaaaasiteeeaeassnbeeeaaasaasssseeeasaanssnseaaeanns

Glossary

Error Log Structures

B.1 OVEBIVIBW ...ttt ettt et h e e et e e sa et e s bt e e es et e e b e e e ean e e e s nnneesnnneeane

B.2 Error Log Structure
B.2.1 HEAUE ... e e
B.2.2 Processor SPeCific ErrOr LOQ.......oiuuiiiieiiiiiiiiie ettt e e B-2
B.2.3 Platform SPecCifiC ErrOr LOQ ...cccooeiiiiiiiieei ittt e e B-3

IA-64 System Abstraction Layer Specification

intgl.

Figures
1-1 e AT LI Y Fo o [P EUPR
1-2 Firmware Services Model

1-3 Firmware Entrypoints Logical Model

2-1 Simplified Firmware Address Map...............

2-2 Firmware Address Map................

2-3 Firmware Interface Table.............

2-4 Firmware Interface Table Entry

3-1 LOCal ID REGISIEI FOMMAL.......ceiiiiiieiiiie sttt e ettt ettt e bt e e s ee st e e e snneeeasnneeeenneee
3-2 Control Flow of Boot Process in a Multi-processor Configuration .. .
3-3 MemOory SEMAPNOre FOMMIAL.ceiiiiieiiiie ittt et e e et ee e eee e snbe e ennbeeesnneeesnneee
4-1 Overview of Machine Check Flow

4-2 Machine Check Code FIOW...........ccccveeiiiiiiiiiniiciee,
4-3 SAL_CHECK Detailed Flow on the Monarch ProCeSSOrccuuuvveeeeiiiiiieie et
4-4 Normal SAL Rendezvous Flow

4-5 Failed SAL Rendezvous Flow
5-1 SAL _INIT CONITOI FIOW ...ttt ettt e e e e e e e e e s st aa e e e e e nnanbaeeeens
8-1 Control Flow of the SAL Procedure INterfacecccovieieiiiiiiiiiirie e
Tables

2-1 FIrMWare AQOArESS SPACEuuiiiiieiiieii ettt e e e st e e e e e e e e b e e e e e e s e bttt eaaeaasstbeeaaeeaaannes
2-2 L I I/ = S PP TP PPN
2-3 1-MB Compatibility Memory AddreSS SPACE......ccoiiuuiiiiieiiiiiiiie ettt ee et ee e e s aeteeeaaaaannnnaes
2-4 1A-32 Compatibility 1/0 Ports .
3-1 SAL Actions based on Processor Self-teSt STateoocveviiiieiiiie e
3-2 SAL System Table HEAUEToooii ettt
3-3 SAL System Table Entry Types
3-4 Entrypoint Descriptor Entry Format............

3-5 Memory Descriptor Entry........cccceeeiiiiiiiiieeennnne

3-6 Memory Type Information Provided to the EFI...

3-7 Platform Features Descriptor Entry

3-8 Translation Register Descriptor Entryccceevveeee .
3-9 Purge Translation Cache Coherence Domain ENtrycccouiiiiiiiiiiiiee e
3-10 Coherence Domain INfOrMALIONveviiieiiiirie e
3-11 Application Processor Wake-up Descriptor Entry .
8-1 DefiNitioN Of TEIMS ...t e e e e e e e b e e nnne s
8-2 State RequIremMents fOr PSR ...ttt et e e et n e ee e e as
8-3 System Register Conventions .
8-4 General Registers — Standard Calling CONVENLIONScooiiiiiiiiiiieiiie e
8-5 SAL RELUIN STALUS.eiiitiie ettt ettt e et e s n e e s neb e e e e e e e s sbe e e ennnee e s
9-1 SAL Procedures Invoking PAL Procedures.

9-2 SAL ProCeduresccccveeenieeenieeenniienenens

IA-64 System Abstraction Layer Specification \Y

Vi

IA-64 System Abstraction Layer Specification

intel.

Introduction 1

1.1

Objectives

This document describes the functionality of the |A-64 System Abstraction Layer (SAL).

This document specifies requirements to devel op platform firmware for 1A-64 systems. A
companion document, The Extensible Firmware Interface (EFI), describes additional interfaces
that must be implemented to access devices on the platform. The EFI Specification is a platform
binding specification and is also part of the |A-64 firmware.

This document isintended for firmware/BIOS (basic input/output device) designers, system
designers and writers of diagnostic and low-level OS software. This document is a specification
and does not specify implementation details.

The primary objectives of the | A-64 firmware layer are to:

Enable boot of IA-64 OSes.
Provide a uniform interface to the boot loaders of the OSes for all I1A-64 platforms.
Ensure that the firmware interfaces are sufficient to contain the platform implementation

differences within the hardware abstraction layers and device driver layers of operating
systems.

Separate the abstraction for the platform hardware from the abstraction for the processor
hardware.

Enable hardware innovation and optimization of IA-64 platforms.

Support OEM capability for platform differentiation.

Support the scaling of systems from the low-end to the high-end including servers,
workstations, mainframe alternatives and supercomputers. Features supported will include

high availability, error logging/recovery, large memory, multiprocessors (MPs), and broader
and deeper /O hierarchies (possibly greater than 100 I/O cards).

Enable boot of shrink-wrapped versions of 1A-32 operating systems (OSes). This will involve
support of IA-32 industry standard calls and Application Programming Interfaces (APIs).

Enable reuse of IA-32 BIOS code as part of SAL. The extent of the IA-32 BIOS reuse is
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer
(PAL) will be in the IA-64 Instruction Set Architecture (ISA).

Enable the use of legacy PC peripherals, option ROMs and PCI cards with 1A-32
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals.
However, this document is not intended to redocument the PC infrastructure specifications.

IA-64 System Abstraction Layer Specification 1-1

1.2

Firmware Model

As shown in Figure 1-1, | A-64 firmware consists of three major components, all of which are

required:

1. Processor Abstraction Layer,
2. System Abstraction Layer, and
3. Extended Firmware Interface Layer.

Figure 1-1. Firmware Model

Operating System Software

1-2

[EFI 4 A
Transfers to OS 0S Boot
Entrypoints Handoff Procedure
for Hardware Calls
Events, - .
Extensible Firmware
L Interface (EFI)
[
OS Boot | |<g-er_ U
Selection ™~ 7
SAL Procedure >
Calls ,/
Instruction
Platform/System Abstraction Layer Execution
(SAL) Interrupts,
Traps and
\ 1 Faults
Acess to PAL Procedure /
Platform Calls ‘_/
Resources | ™~ \
< Transfers to SAL
e Entrypoints
P 2
Processor Abstraction Layer
(PAL)
Processor (Hardware)
A
- Performance Critical
Hardware Events,
Non-performance Critical e.g. Interrupts
Hardware Events, e.g. A
Reset, Machine Checks T

Platform (Hardware)

000950

IA-64 System Abstraction Layer Specification

Figure 1-2. Firmware Services Model

PAL encapsulates the processor model specific hardware and is part of the |A-64 Instruction Set
Architecture (ISA) extension. PAL isthe firmware layer that abstracts the processor
implementation-specific features and isindependent of the number of processors. SAL isthe
platform specific firmware component that isolates OS and other higher level software from

implementation differences in the platform. EFI is the platform binding specification layer that
provides alegacy free APl interface to the OS Loader.

PAL, SAL and EFI together provide system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PM1) handling and other processor and system
functions which would vary between implementations. The interaction of the various functional
firmware blocksis shown in Figure 1-2.

Operating System Software

OS Machine .
OS Loader Check OS Init
Handler
Handler
A A
v ' EFI
. (¢S]
Runt_lme Boot
Services p
Services
Y A
PR S SAL
: Boot :
| Services |
I (Transient) :
v oL w
Platfqrm Platform Platform Platform Platform
Runtime N
. Reset Error Init PMI
Sevices Handler dl Handler Handler
(Procedures) Handler
i) i) i
________ Reset Event,
|
T
AR y v ¥ PAL
Proce; Sor Processor Processor Processor Processor
Runtime R
Services Reset Error Init PMI
Handler Handler Handler Handler
(Procedures)
Reset/ Machine Initialization PMI
Power On Check Event Event
Platform/Processor Hardware
000933
1-3

IA-64 System Abstraction Layer Specification

1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an | A-64 platform:

Initialize, configure, and test the platform hardware. This includes the memory and /O
subsystems, the necessary boot devices and platform specific hardware.

Select the bootstrap processor (BSP) in a MP platform and set the configurable processor
features. The IA-64 processor provides its own PAL firmware for initialization and test, but
this abstraction has no knowledge of the platform and so further platform-specific action is
necessary to integrate the processor to the rest of the system. For example, the SAL must
configure, test and initialize memory before the processor cache to memory interface can be
established and tested (SAL_RESET interface).

Optionally, encapsulate and provide the environment necessary to run 1A-32 BIOS and plug-in
cards containing IA-32 Option ROMs.

Provide low level service routines to aid the EFI and the OS Loader in establishing the
environment necessary for the OS to run in.

Provide common data structures to the OS to convey initialization and configuration
information.

Provide the necessary services and common infrastructure to support MP configurations.

Provide Runtime Service routines to encapsulate those functions of the platform necessary for
the EFI and the OS while they are running.

Provide the functions necessary to aid in the logging and recovery from Machine Check
conditions (SAL_CHECK and OS_MCA interface).

Provide the functions necessary to aid in the logging and recovery from INIT conditions
(SAL_INIT and OS_INIT interface).

Provide the functions necessary to handle the platform management events (SALE_PMI
interface).

Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

Optionally, provide an user interface to aid in system configuration, information passing and
troubleshooting.

These SAL functions can be divided into the following interface categories:

1-4

SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.
OS entrypoints from SAL: OS_MCA, OS_INIT and OS_BOOT_RENDEZ.
SAL Runtime Service routines.

IA-64 System Abstraction Layer Specification

intel.

1.4

Firmware Entrypoints

Figure 1-3. Firmware Entrypoints Logical Model

141

PAL SAL (O]
SAL BOOT |«g — — —Nakeup_
_RENDEZ
Firmware Recovery e Bootstrap
Application
Complete (BSP) Faynlpviesraak Fég(l::e)ssor |
(APs) .

Al
Reset » |_go| EFIBOOL | o
—n>F’ALE RESETH{SALE_ENTRY| SAL_RESET OS_LOADER
Power-O - - - Manager

SAL MC_ | o _akeup
RENDEZ 1
|
MC_Rendezvous |
Interrupt
MC Rendezvous complete ' (APs) |
V | | I
Error
PALE_CHECK |— | SALE_ENTRY |—®1 SAL_CHECK |—p»{ OS_MCA
BSP
Initialize
— | PALE_INIT | SALE_ENTRY SAL_INIT |l OS_INIT
PMI -
4_' PALE_PMI |-¢— SALE_PMI
Resum

Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:
* Power-on/reset
« Hardware errors (both correctable and uncorrectable)
« Initialization request
* PMIs

IA-64 System Abstraction Layer Specification

1.4.2

1-6

intel.

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 1-2 and Figure 1-3):

1

PALE_RESET - initializes the processor following power-on or a reset. This entrypoint
within PAL calls SALE_ENTRYPOINT in SAL to test for firmware recovery indication.
SALE_ENTRY, in turn, calls a procedure within SAL called SAL_RECOVERY_CHECK
that performs the recovery if firmware recovery indication is present on the platform, else
returns to PAL via SALE_ENTRY. If firmware recovery is required, the SAL recovery code
will accomplish the firmware recovery function, reset the recovery indication and then
trigger a system wide reset causing re-entry into PALE_RESET. If SAL reports to PAL that a
firmware recovery condition does not exist, PAL conducts additional processor tests and
then branches to SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL
called SAL_RESET to initialize the system.

PALE_CHECK - saves the minimal processor state, determines if errors are processor
related, saves processor related error information and corrects errors where possible (for
example, by flushing a corrupted instruction cache line and marking the cache line as
unusable). PALE_CHECK then branches to SALE_ENTRY in SAL. SALE_ENTRY, in
turn, branches to a procedure within SAL called SAL_CHECK to complete the error
logging, correction, and reporting. PALE_CHECK is entered as a response to processor
and/or platform errors.

PALE_INIT — saves the minimal processor state, initializes the processor, and branches to
SALE_ENTRY in SAL. SALE_ENTRY, in turn, branches to a procedure within SAL called
SAL_INIT. PALE_INIT is entered as a response to an initialization event.

PALE_PMI — determines the type of platform management event, and branches to
SALE_PMI. PALE_PMI is entered as a response to a platform management event.

System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1.

SALE_ENTRY - PAL branches to this SAL entrypoint after a power-on reset, machine
check or initialization event. The code at this entrypoint using the hand-off value in a
General Register, jumps to different entrypoints within SAL for Reset, Firmware Recovery,
Machine check and Initialization events.

SAL_RESET within SAL is entered for system initialization after PAL has initialized the
processor. SAL_RESET functionality is describe@€apter 3

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test
if a firmware recovery condition is present. SAL is the only entity that has knowledge of
platform resources to determine if a firmware recovery condition is present.

SAL_CHECK within SAL is entered for logging errors, and correcting platform related
errors where possible. SAL_CHECK functionality is describedhnpter 4

SAL_INIT within SAL is entered for saving the state of the system and performing
additional functions as defined @hapter 5

SALE_PMI — PAL branches to this SAL entrypoint for handling platform management
events in an implementation dependent manner.

IA-64 System Abstraction Layer Specification

1.4.3 Operating System Entrypoints

There are several entrypoints from SAL into an OS (or equivalent software):

¢ OS_LOADER - OS Loader. Entered from SAL_RESET on the BSP only, after the system has
been initialized and the OS Loader image has been loaded by the EFI component from the boot
device. Refer to thEFI Specification for details.

¢ OS_BOOT_RENDEZ — OS MP Rendezvous Handler. Entered from SAL when OS on the BSP
wakes up the application processors (APs), to permit synchronization of APs in a MP
environment.

¢ OS_MCA - OS Machine Check Abort Handler. Called from SAL_CHECK to allow the OS to
handle the machine checks that are not corrected by hardware, PAL or SAL.

¢ OS_INIT — OS Initialization Handler. Called from SAL_INIT to handle a valid initialization
event.

1.5 Related Documents

The following documents contain additional material related to 1A-64 processors:
» Advanced Configuration and Power |nterface Specification, 1996 — Intel/Microsoft/Toshiba
* BIOSBoot Specification, 1996 — Compag/Phoenix/Intel
* BIOSEnhanced Disk Drive Specification version 3.0 — Phoenix

Bootable CD-ROM Format Specification, 1994 — Phoenix/IBM

CBIOS for IBM Computers and Compatibles — Phoenix

¢ Extensible Firmware Interface Specification — Intel

* |A-64 Software Conventions and Runtime Architecture Guide — HP/Intel

Intel® IA-64 Architecture Software Developer's Manddhtel

» PCI BIOS Specification, 1994 — PCI SIG

Plug and Play | SA Specification, 1994 — Microsoft

IA-64 System Abstraction Layer Specification 1-7

IA-64 System Abstraction Layer Specification

intel.

Platform Requirements

2.1

Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000
through OxFFFF_FFFF). This address space is shown in Table 2-1.

Table 2-1. Firmware Address Space

2.2

OXFFFF_FFFF
PAL/SAL ROM

SAL Resources

OxFF00_0000

The firmware address spaceislogically partitioned into two major functional blocks: the ROM area
(shared by the SAL and PAL) and the SAL Resources area. The ROM areais placed in the address
space such that its ending address is at OxFFFF_FFFF. The SAL Resources area occupies the
portion of 16 MB firmware address space not occupied by the ROM area. SAL code can use the
specia hardware resources which the platform has implemented in the SAL Resources area. The
hardware resources implemented can optionally include (but are not limited to) scratch RAM,
non-volatile memory (NVM), environment control and status registers. The location of the
hardware resources within the SAL Resources areais platform dependent.

PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code
areas and atable called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:
« PAL_A which is processor stepping independent and
« PAL_B which is processor stepping dependent.

These two subcomponents are required and must be separated logically even if they are
physically located in contiguous spaces. The PAL_A block contains alimited subset of PAL
procedures (PAL_PROC) that can be invoked by SAL while performing afirmware recovery
(refer to Volume 2 of the Intel® 1A-64 Architecture Software Developer's Mantal details).
The PAL_B block contains al the PAL procedures that can be invoked by SAL and the OS.

IA-64 System Abstraction Layer Specification 2-1

2.3

2.4

2-2

intel.

In asimilar fashion, SAL code can be broken into two subcomponents:
* SAL_A which contains the SALE_ENTRY entrypoint and all the code needed for firmware
recovery.
» SAL_B which contains code to test and initialize the platform.

Unlike the PAL, the SAL subcomponents need not be separated from each other logically or
physicaly.

The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Code in the PAL_A can transition to:
« Code in the PAL_B using the FIT. First, the beginning address of the PAL_B block is
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET)
are determined in a PAL implementation dependent manner.

» Code in the SAL_A address space at SALE_ENTRY which serves as the entrypoint for Reset,
Recovery, Machine Check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be held in
compressed format. SAL code that is executed out of ROM such as early stages of the Reset
sequence, and code for handling Machine check and INIT cannot be held in compressed format.

Simplified Firmware Address Map

Following is a simplified example of the firmware address map that showsrtimeum
architectural components. ReferSection 2.4.%or description of the fields. This layout is not
expected to be used with a flash ROM supporting the protected boot block featirguse-2
for a different firmware organization supporting the protected boot block.

Firmware Organization using Protected Boot Block

This section describes an example of a typical firmware organization using a flash ROM that
contains a protected boot block.

Protected boot block refers to a block of the Flash ROM that is prevented from modifications by
hardware. Code in this block can contain logic to restore PAL/SAL code in the erasable portion of
the flash part after a previous flash programming attempt was accidentally aborted. Firmware
organization using protected boot block requires some data structures in addition to the minimum
architectural requirements discussed earlier.

To support the protected boot block, both the PAL_A code and SAL_A code must be within the
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A
part of the protected boot block.

IA-64 System Abstraction Layer Specification

intel.

Figure 2-1. Simplified Firmware Address Map

4GB

|IA-32 Reset vector (16 bytes)
j, SEQS SAL Entrypoint__(SALE_ENTRY) @by | o
4 GB-32 Firmware Interface Table Entrypoint (8 bytes) | — 64 bytes T :
4 GB-48 FIT entry for PAL_A (16 bytes) | :
4 GB-64 Reserved (16 bytes) | X
PALE_RESET = b
. . A !
PALE_INIT —= | PAL_A binary block (multiple of 16 bytes) (PAL_A size)| :
PALE_CHECK—> i |
|
T I
PAL_B binary block ; B [
(multiple of 16 bytes) (PAL_B size)l :
4 GB - (A+B+64) I | :
|
. . Y !
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT size) | :
- |
SAL_A binary block (multiple of 16 bytes) :

: 16 MB
C . (Maximum RQ
(SAL_A size) '
SALE_ENTRY —=] :
5B — (A+B+64+Y+C)
Available ROM space
4 GB-16 MB
24.1 Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries
are implementation dependent. The Firmware Address Space contains severa regions and locations
as shown in Figure 2-2 below for atypical implementation.

The firmware address space contains the following regions and locations:

e The 16 bytes at (4GB — 16) contains the IA-32 Reset Code. This is typically an 1A-32 far JIMP
instruction followed by the Date, the PC-AT* model signature, etc. This code is never executed
but is present for PC-AT compatibility.

IA-64 System Abstraction Layer Specification 2-3

Figure 2-2. Firmware Address Map

4GB >
1A-32 Reset Vector (16 bytes)
4 GB-16 >
SALE_ENTRY Address (8 bytes) ———
4 GB-24 -
4 GB-32 _ | Firmware Interface Table Address (8 bytes) ———
4 GB-48 - PAL_A FIT Entry (16 bytes) 64 bytes
Reserved (16 bytes) l (Protected |
4 GB-64 >
PALE_RESET-—»

, . A
PALE_| NI T—»~| PAL_A Block (multiple of 16 bytes) (PAL_A Size)
PALE_CHECK—-

SAL_A Block (multiple of 16 bytes) | (SAL A size
(IA-64 and optional IA-32 code) p vt (-)
4 GB-X _ i y
SALE_ENTRY o A
. . Y
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size)
4 GB-(X+Y) _
FIT_BASE g]) -——-
Reserved PAL Space (optional) (multiple of 16 bytes)
PAL_B Block (multiple of 16 bytes)
C
(PAL_B Size)
4 GB-(X+Y+C) _
PAL_BASE >]]
Reserved SAL Space (optional) (multiple of 16 bytes)
SAL_B Block (multiple of 16 bytes)
D
(SAL_B Size)

4 GB-(X+Y+C+D)
SAL_BASE

4 GB-16 MB

Bootblock) :

\/

Available ROM Space

16 MB
(Maximum ROM)

000935

2-4

IA-64 System Abstraction Layer Specification

The 8 bytes at (4GB — 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this
address must be set to 1 to indicate the uncacheable memory attribute in physical addressing
mode.

The 8 bytes at (4GB — 32) contain the pointer to the FIT. Bit 63 of this address must be set to 1.
The FIT need not be located immediately before the protected boot block. However, the FIT
cannot be moved to a different location since its address is contained in the protected boot
block.

The 16 bytes at (4GB — 48) describe the characteristics of the PAL_A component in the ROM
(base address, size, version number, type, etc.) This is represented in the FIT entry format for
the sake of uniformity. Bit 63 of theldress field within this FIT entry must be set to 1 and the
type field must have a value of OxOF.

The 16 bytes at (4GB — 64) are reserved for future use.

The PAL_A code resides below the (4GB — 64) address. This area of variable size contains the
hardware-triggered entrypoints PALE_RESET, PALE_INIT, and PALE_CHECK, as well as
minimal processor initialization code. This code area must be a multiple of 16 bytes in length.
PAL_A uses the FIT entry of the PAL_B to reach continuation entrypoints in PAL_B for Reset,
Machine check and INIT.

The codein the PAL_A block contains enough capability to initialize the processor, invoke the
SALE_ENTRY procedure for test of the recovery indication and continue with normal PAL
executionin the PAL_B code area. The code in this area shall be identical for all |1A-64
processors in the same family. This code shall be unaffected by processor stepping changes.

SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility
and to conserve space in the protected boot block, this area will primarily contain code for
firmware recovery. When entered for other conditions such as Normal Reset, Machine Check
or INIT, the code in this block will find the continuation entrypoints in the SAL_B block

(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY
code reaches continuation entrypoints in SAL_B for Reset, Machine check and INIT is SAL
implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during
firmware execution but may be needed by the utility that merges these components to format
the protected boot block portion of the flash ROM.

Underneath the protected boot block is the FIT. It comprises 16-byte entries containing starting
address and size information of the remaining firmware components in the non recovery
portion of the flash ROM: PAL_B, SAL_B, etc. ReferSection 2.5or FIT details.

Underneath the FIT is the code for the IA-32 BIOS, EFI, SAL_B and PAL_B components.
There are no ordering requirements for the firmware components within the flash ROM.

The PAL_B binary block contains the PAL code which is not required for firmware recovery.
The PAL_B code area is a multiple of 16 bytes in length and must be aligned on a 32K-byte
boundary. PAL_B’s FIT entry contains the address and size of the PAL_B binary block.

The remainder of the SAL/PAL ROM area is occupied by the SAL_B code. SAL_B’s FIT
entry (if present in the FIT), contains the address and size of the SAL_B binary block.

Code within SAL (SAL_A & SAL_B) may include 1A-32 code. The location of the SAL_B
and 1A-32 BIOS code within the SAL/PAL ROM area is implementation dependent. Some
SAL implementations may separate the 1A-64 and 1A-32 code components as separate
firmware blocks with unique FIT entry types. In a similar fashion, the SAL_B component may
include the EFI component or a separate FIT entry may point to the EFI component.

IA-64 System Abstraction Layer Specification 2-5

2.5 Firmware Interface Table

2-6

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components that are outside the protected boot block. Because these code blocks may be compiled
at different times and places, code in one block (such as PAL_A) cannot branch to code in another
block (such as PAL_B) directly. The FIT alows code in one block to find entrypoints in another.
The figure below showsthe FIT layout.

Figure 2-3. Firmware Interface Table

1 1
| |
4GB-X _
Unused entry (16 bytes)
Unused entry (16 bytes)
Y
Unused entry (16 bytes)
Unused entry (16 bytes)
PAL_B entry (16 bytes)
FIT Header entry (16 bytes)
4AGB-(X+Y) .
| |
1 I

Each active FIT entry contains information for the corresponding firmware component. The first
two entries are used to describe the FIT tableitself and the PAL_B block respectively and these two
entries are architecturally required. FIT entries shall be in ascending order of entry types else
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Figure 2-4. Firmware Interface Table Entry

Start + 16 63 56 55 54 4847 3231 24 23 0
ICheck: C_Vi T)
(1e Eyf:)m 1bit! (7yl?i?s) Version (2 bytes) R?ﬁﬁ? Size (3 bytes)
Start + 8 .
Address (8 bytes)
Start of entry ——»

Addressis the base address of the component and it must be aligned on a 16-byte boundary. For the

FIT Header entry, this field contains the ASCII value of *_FIT_<sp><sp> <sp>' where <sp>
represents the space character. For the PAL_B entry, bit 63 of the address field must be set to 1 to
indicate the uncacheable memory attribute in physical addressing mode. The PAL_B component
must be aligned on a 32K-byte boundary.

Szeis the size of the component in paragraphs of 16-bytes.

IA-64 System Abstraction Layer Specification

\ersion contains the component’s version number. For the FIT Header, Eryalue in this field
will indicate the revision number of the FIT data structure.

C_Vis a one bit field that indicates whether the component has a valid checksum. If this bit is zero,
the value in th&hksum field is not valid.

Type contains the seven-bit type code for the element. Types are defifaiolé2-2

Table 2-2. FIT Types

2.6

Type Meaning
0x00 FIT Header entry
0x01 PAL_B
0x02- Ox0E Reserved
OxO0F PAL_A
0x10- Ox7E OEM-defined
OX7F Unused

The type code of OxOF is used for PAL_A. Since PAL_As binary image is located near the end of
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry
is also located within the protected boot block (at 4GB — 48), and not in the FIT table. The OEM
may define unique types for one or more blocks of SAL_B, EFI, I1A-32 BIOS, etc., within the
OEM-defined type range of 0x10 to OX7E.

Chksum contains the component’s checksum. The modulo sum of all the bytes in the component
and the value in this fieldohksum) must add up to zero. This field is only valid if BeV field is
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum
option is selected for the FIT in tkéT Header entry (FIT type 0), the modulo sum of all the bytes

in the FIT table must add up to zero.

With this address layout, when one of the firmware components changes, only that component’s
flash portion requires changes. This address layout can also support multiple ROMs for the
firmware components and such ROMs are not restricted to reside below 4GB.

Resources Required for PC-AT* Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB
is defined as the compatibility area and is used by firmware when initializing and executing I1A-32
BIOS (refer toTable 2-3. The requirements specified below need not be implemented on the
platform if PC-AT compatibility is not required.

Table 2-3. 1-MB Compatibility Memory Address Space

O0x000F_FFFF
0x000F_0000

Shadowed 1A-32 System BIOS

0x000E_FFFF Shadowed IA-32 Extended System
0x000E 0000 BIOS/Option ROM/Memory area

IA-64 System Abstraction Layer Specification 2-7

Table 2-3. 1-MB Compatibility Memory Address Space
0x000D_FFFF

Shadowed 1A-32 Option ROM BIOS
or

0x000C_0000 ISA Bus Expansion Memory

0x000B_FFFF

VGA Frame Buffer

0x000A_0000
0x0009_FFFF

Memory

0x0000_0500
0x0000_04FF
0x0000_0400
0x0000_03FF
0x0000_0000

IA-32 BIOS RAM Data Area

IA-32 Interrupt Vector Area

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system
memory. For example, a server platform may choose to implement the system console on a seria
port and eliminate the VGA frame buffer and the VGA BIOS components. | A-32 stack should be
alocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode 1A-32
BIOS code.

| A-64 platforms may use |/0 adapter cards containing 1A-32 Option ROMs during the boot
process. A portion of the SAL code may also contain | A-32 code. Such |A-32 code aswell as1A-32
OSes may rely on the existence of PC-AT compatible components. In order to execute such |A-32
code, al |A-64 platforms shall implement the I/O ports specified in Table 2-4. Alternatively, the
SAL cantrap some or al 1A-32 /O instructions and emul ate the I/O ports that are not present on
the platform. Refer to Section 7.2.4, “IA-32 Support Environmeriér more details.

Table 2-4. 1A-32 Compatibility I/O Ports

Port Description
0x20-0x21 Programmable Interrupt Controller (Master)
0x40-0x43 Programmable Interval Timer
0x70-0x71 CMOS NVRAM Address, Data Ports
0xA0-0xAl Programmable Interrupt Controller (Slave)

2.7 Chipset and Shadowing Requirements

Following are the SAL requirements from the chipset implementation:

» The firmware code and data within the firmware address range must be accessible from the
processor without any special system fabric initialization sequence. This implies that the

2-8 IA-64 System Abstraction Layer Specification

2.8

system fabricisimplicitly initialized at power on for accessing the firmware address space or
aternatively, the special hardware that contains the firmware code and data is implemented on
the processor and not accessed across the system fabric.

Firmware may copy ROM based code and data structures to RAM to increase performance and
to allow for updates of ROM based data structures by initialization firmware. Platforms are not
required to implement any write protection for these shadowed areas. Since hardware events
such as Reset, Machine Check and INIT enter architected PAL entrypoints in the ROM around
the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the
PAL/SAL ROM area subsequent to the shadowing of firmware code.

1A-64 memory management features needed for | A-32 execution can be set up to prevent
writes to the shadowed RAM areas. The | A-64 instruction set architecture provides
instructions to synchronize the instruction and data caches in the presence of self-modifying
code.

Chipsets need not implement in-line shadowing (Read cycles going to ROM, Write cycles
going to RAM) for copying IA-32 segments at EO000 to FFFFF to RAM.

Platform Support for Variant Architectural Features

Different platform implementations may vary with respect to each other in the features they
implement and yet they could be architecturally compliant. As an example, some platforms will
implement bus lock while other platforms will not. This has implications for software running on
these platforms, and therefore this information must be communicated to software. SAL firmware
is responsible for knowing the architectural variant and correctly communicating the information to
software. How SAL knows about the architectural variant is implementation dependent. The
following lists the features which fall into this category and describe the method of abstraction to
software.

¢ Bus Lock: If bus lock is implemented on a system, then SAL shall set the Default Control
Register Lock Check Enable bit to 0 (DCR.Ic = 0), otherwise the DCR.Ic shall be setto 1. The
OS shall not alter DCR.Ic bit setting if it is set to 1. Refer to the PAL call PAL_BUS _
SET_FEATURES in théntel® IA-64 Architecture Software Developer's Mantal
information on masking Bus Lock signal and executing the locked transaction as a series of
non-atomic transactions.

Lowest Priority Interrupt: SAL shall communicate to the OS, through the SAL System Table
(Table 3-3, whether this feature is supported by the platform.

Address space attributes: SAL shall communicate to software the supportable access attributes
for all valid address space mappings. This information is provided to the OS by the EFI
component. As an example of this architectural variant, consider two memaory controllers
where one supports sub-cache line writes to memory and another which does not. The first
case would be described as write-through or write-back cacheable, whereas the second case
would be described as supporting only write-back cacheable. Similarly, the UCE memory
attribute indicates whether the address space permits the exportindebéttaéd operation

outside the processor. Memory attribute features for address spaces are fully described in the
Intel® IA-64 Architecture Software Developer's Manual.

IA-64 System Abstraction Layer Specification 2-9

2.9

2.10

intel.

Platform Considerations Related to Geographic
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of
processors in a MP configuration:

» The platforms shall provide mechanisms to generate unique geographic identifiers for those
components that have software visibility. As an example, imagine a complex MP
implementation which has more than one main system bus to which processors are attached. A
processor returns its location on the bus via a call to PAL_FIXED_ADDR, but this PAL call
does not reflect the multi-bus configuration of the platform. It is therefore required that the
platform provide some mechanism for SAL to ascertain which bus a processor is attached to.
SAL will use this value to load the Streamlined Advanced Programmable Interrupt Controller
(SAPIC) EID field in the Local ID register (CR.LID) of the processor(s). This is necessary for
supporting interprocessor interrupts (IPIs). The above example is not meant to limit this
requirement to processors, as multiple host I/O bridges and multiple memory controllers etc.,
may also have a similar requirement.

Platforms may implement unique ways of providing the SAPIC EID vaue. For example, in a
non-clustered environment, SAL may use the hardcoded value of O for this field. Another
exampleisacluster controller that provides different EID values for processors connected to
different buses on the system. It is expected that these mechanismg/agorithms will be very
simple, to facilitate exchange of |PIs between processors (if needed), to determine the BSP
node and the BSP processor in a MP environment. The BSP selection needs to be done very
early in the boot sequence and during firmware recovery. Since multiple processors may be
attempting to read the EID, a scheme that involves writing an index followed by reading the
value from acluster controller 1/0 port or the CMOS NVRAM 1/0O port may be proneto errors.

A multi-TLB (Translation Lookaside Buffer) coherence domain platform must provide a
mechanism for detecting which TLB coherence domain the processor is located in.

Non-volatile Memory Requirements

IA-64 platform hardware must provide a minimum of 32KB of NVM to hold the Error log captured
during machine check events. There may be additional NVM requirements to hold information on
the OSes that can be booted from the platform, the platform configuration, etc. RefdERb the
Specification for requirement details as well as the interfaces to the NVM space.

The NVM must preserve memory contents when the system power is off. Possible NVM
implementations are battery backed SRAM and flash memory. The physical address and size of
each NVM object in the system will be specifiedrable 3-5, “Memory Descriptor Entry®ith:
» Memory type classification oRegular Memory andMemory Usage classification ofirmware
Reserved Memory for battery backed SRAM implementation and

» Memory type classification ofirmware Address Space when NVM is implemented as part of
the firmware flash ROM.

IA-64 System Abstraction Layer Specification

intel.

2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

If firmware recovery feature is supported in SAL, the 1A-64 platform must provide an
implementation specific hardware mechanism to reflect the user sdiestedre recovery
condition to all the processors on the platform.

1A-64 platforms must support simple hardware and/or software implementations for BSP
selection, e.g. write once port. This is necessary since only the BSP is allowed to execute the
firmware recovery code.

1A-64 platforms must provide mechanisms to determine the base frequency of the platform
(clock input to the processor).

1A-64 platform hardware must provide a mechanism for firmware to reset all components
within the platform.

IA-64 platform hardware must provide a switch or other mechanism that produces an INIT
signal. This feature, generally known as the CrashDump switch, may be used to effect a crash
dump on a “hung system”.

1A-64 platform hardware must provide user friendly mechanisms for displaying the progress of
the boot and firmware recovery, e.g. LCD display.

IA-64 System Abstraction Layer Specification 2-11

2-12

IA-64 System Abstraction Layer Specification

intel.

Boot

Sequence 3

3.1

Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from Reset to OS launch.

On Reset, all the processor(s) begin execution at PALE_RESET, alocation within the PAL_A code
areanear 4 GB in ROM, inthelA-64 ISA. The exact physical location of PALE_RESET is
processor implementation dependent. PALE_RESET initializes and tests the processor using
stepping independent code. It will then call SALE_ENTRY with the Recovery Check function to
verify if the user has selected firmware recovery in a platform dependent manner.

SALE _ENTRY isthe common entrypoint in SAL_A from code in the PAL_A and PAL_B blocks

for Reset, Recovery, Machine check and INIT events. PAL code obtains SALE_ENTRY entrypoint
from the 8-byte pointer at 4GB — 24. The state of the processor on entry into SALE_ENTRY is
described in thintel® 1A-64 Architecture Software Developer’s Manu@he of the general

registers, indicates the event causing entry into SALE_ENTRY: Reset, Recovery check, Machine
check or INIT. SALE_ENTRY uses this argument to jump to internal entrypoints SAL_RESET,
SAL_RECOVERY_CHECK, SAL_CHECK or SAL_INIT.

PAL_A passes status information to SALE_ENTRY on the health of the processor and whether the
version of the PAL_B in the firmware is compatible with the processor’s stefibig. 3-1shows
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

Table 3-1. SAL Actions based on Processor Self-test State

Processor

Health SAL Handling
Catastrophic Disable interrupts and Machine Checks, then go into a spin loop
Failure
Healthy Proceed with SAL Reset
Performance | Proceed with SAL Reset if this is the only processor on the system. Else, try to
Restricted inform the user. Disable interrupts and Machine Checks, then go into a spin
loop

Functionally Try to inform the user. Disable interrupts and Machine Checks, then go into a
Restricted spin loop

The code in SAL_A will initiate recovery and update the firmware if:
« the platform indicates a recovery condition; or
« the PAL_A code reports an authentication failure on the PAL_B component in the firmware; or
« the PAL_A code reports checksum or other errors in the FIT or the PAL_B component; or

¢ the PAL_A code reports on all the processors that the version of the PAL_B in the firmware is
incompatible with the stepping level of the processors in the system.

IA-64 System Abstraction Layer Specification 3-1

3.1.1

3.1.2

3.2

3-2

Code Flow during Recovery

If firmware recovery isrequired, the SAL recovery code shall authenticate the new binary using
codeinthe PAL_A block. The SAL code will then accomplish the firmware recovery function,
reset the recovery indication and trigger a system wide reset causing re-entry into PALE_RESET.
SAL recovery code contains the logic to update one or more of the firmware components from
floppy disk or other OEM supported media. Note that firmware recovery codein SAL_A must be
processor stepping independent and must not invoke code in the PAL_B block.

In amulti-processing environment, the recovery code will first select aBSP. SAL shall not select a
processor asthe BSP unlessit is reported as healthy or performance restricted by PAL and the
version of PAL_B on the system is compatible with the processor stepping. The BSP will
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B
component is updated, otherwise the system behavior is unpredictable.

Since PAL_B functionality cannot be invoked during recovery, only alimited set of PAL
proceduresinthe PAL_A are availablefor use by the SAL recovery code (refer to the Intel® 1A-64
Architecture Software Developer's Mandaf details). Further, if the SAL_A invokesthe I1A-32
BIOS, floating-point transcendental instructions listed below cannot be executed from the |A-32
instruction set.

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

Normal Code Flow

If a recovery condition does not exist, SALE_ENTRY shall return to PALE_RESET on all the
processors that are compatible with the version of PAL_B on the system, using the return address
provided by PALE_RESET to effect the second stage of processor test and initialization. If SAL_A
did not effect such a return, the processor may run in a degraded mode. In any case, the
PAL_PROC address provided to SALE_ENTRY at the timBeobvery Check supports only a

small subset of the PAL procedures (sedrtel® IA-64 Architecture Software Developer’s

Manualfor details).

Onreturn from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from

location (4 GB — 32) and then uses the FIT to get the address of the PAL_B component in the non
recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in the
PAL_B block and jump to it. The processor stepping dependent code in the PAL_B block will then
perform the complete processor testing and initialization and then re-enter the SALE_ENTRY with
the function value oNormal Reset. Code at SALE_ENTRY will jump to the code in the SAL_B

block to continue the boot sequence and will eventually boot the machine to the OS.

SAL_RESET

SAL_RESET is responsible for performing platform test and initialization, invoking EFI firmware
which, in turn, loads the first level of OS Loader and jumps to it. SAL_RESET may also be entered
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from

IA-64 System Abstraction Layer Specification

3.21

PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY isentered from locations
other than PALE_RESET.

SAL_RESET functionality can be subdivided into the following phases:
« Initialization phase
* BSP identification phase
¢ Platform initialization phase
* OS Boot phase

Initialization Phase

This phase begins execution at SAL_RESET and is performed on all the processors in the system.
The Local ID (LID register) is architected in theel® |1A-64 Architecture Software Developer’s
Manual It isthe SAL’s responsibility to uniquely initialize this register in each processor prior to
performing BSP selection and enabling interruptsin a MP system. For uniprocessor (UP) systems,

SAL must initidize thisregister prior to enabling interrupts. The OS must not change the value that

SAL stored into this register. Otherwise, routing of interrupts to the correct processor may not

function correctly. The LID register’s format is showrFigure 3-1

Figure 3-1. Local ID Register Format

L | | | | | | | |
‘31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0‘

id eid reserved
| |

L | | | | | | | |
‘63 62 61 60‘59 58 57 56‘55 54 53 52‘51 50 49 48‘47 46 45 44‘43 42 41 40‘39 38 37 36‘35 34 33 32‘

‘ ignored ‘

Theid field is provided by the PAL during Reset handoff in a general register. This valu®isthe
Agent ID which corresponds to the slot number on the front side bus that the processor is plugged
into. For proper functioning of the lowest priority interrupt mechanismigtfield must match the

Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors.

SAL must invoke the PAL_PLATFORM_ADDR procedure on all processors to set the physical
address of the SAPIC Interrupt block memory and the 1A-32 I/O port space if the default address
values are not used. The default address for the SAPIC Interrupt block memory is
0x00000000_FEE00000 and the default address for the 1A-32 I/O port space is the 64 MB space
below the highest physical address supported by the processor implementation. SAL will use a
value that does not conflict with other devices on the platform. The OS shall not change both these
address values. SAL will set up the IOBASE register (AR.k0) that provides the high order bits of
the virtual address of the 1A-32 1/O port block, to the same value as its physical address, to maintain
identity mapping. The OS is free to change the virtual address component in the IOBASE register
value but the value must be aligned on a 64 MB address boundary.

IA-64 System Abstraction Layer Specification 3-3

3.2.2

3.22.1

3-4

Bootstrap Processor Identification Phase in an MP
Configuration

This phase is executed on all the processors. All processors may participate in the selection of the
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the bus to
which the processor is connected. SAL will use this address and bus identification information to
derive a unique geographical address for the processor and use the same in the sel ection of the boot
processor. The derivation of the unique geographical address is implementation-dependent. SAL
shall not select a processor asthe BSP unlessit is reported as healthy by PAL and the version of
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing steps in a MP configuration. The APs will set up
processor-specific resources such as the Interrupt Vector Address (IVA) and enter the rendezvous
state (EM_Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for further
processing. Processors in rendezvous state will disable external interrupts and poll the rendezvous
interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will continue
with platform initialization and when sufficient amount of memory has been tested, it will send a
rendezvous interrupt to the APs to wake them up to run their late self-test (which requires memory
to run). After the APs have finished late self-test, they will return to the rendezvous state
(EM_Rendezvous _2).

The BSP continues with platform initialization, loading the EFI firmware which, in turn, searches

for bootable devices, |oads the OS Loader and transfers control to it. These steps are described in
later sections of this document and the EFI Specification.

Rendezvous Functionality

The rendezvous functionality is required only in MP environments and this functionality is utilized
in two different situations:

» To wake up the APs during boot: The APs stay in a loop until woken up by the SAL layer on
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and
platform tests. Once these tests are completed, the APs return to the wait loop within SAL.
Also, once the OS kernel takes over, it will wake up the APs based on the wake up information

provided by the SAL (refer tBection 3.2.@andTable 3-1).

semaphore to be used for the wake up. Refé8Ad._MC_SET_PARAMS” on page 9-1for
details.

For the wake up functionality, the mechanism could be an external interrupt vector in the range of

0x10 to OxFF or a memory semaphore.

If external interrupt mechanism is chosen, APs will disable interrupts and poll the local SAPIC IRR
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority
Register (TPR) must be set such that a read of the IVR register will return the rendezvous interrupt
vector (instead of the spurious interrupt), if one is pending. On receipt of the interrupt, the AP will
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.

IA-64 System Abstraction Layer Specification

To bring the APs to a spin loop during machine check rendezvous and to wake up the APs after
machine check processing is completed: The OS specifies the external interrupt vector to be
used by SAL to bring the APs to a spin loop as well as the external interrupt vector/memory

Figure 3-2. Control Flow of Boot Process in a Multi-processor Configuration

PALE_RESET

PAL_RESET

SALE_ENTRY

SAL_RESET

BSP Selection

Initialization &
Memory Test

PAL Late Self-test

Wake APs for
PAL Late Self-test

v

Load OSLoader
from Boot Device

Update Firmwal

System Reset

Optional

re, do

Rendezvous
Interrupts

I1A-64 Initialization

OS_Loader

Wakeup APs

Set Wakeup Entry, |

Initializatize 1A-32
system params,
enter |A-32 system
environment

Rendez
Interrupt?

Rendez
Interrupt?

IA-64 OS

APs

IA-32 OS

I1A-64 Initialization

Jump to OS
BOOT_RENDEZ

Initializatize 1A-32
system params,
enter |A-32 system
environment

e

Wait for 1A-32
Startup IPI

1A-32 OS

1A-64 OS will issue
Rendezvous interrupt
to wake up the APs

IA-32 OS will issue
Startup IPI to
wake up the APs

000937

IA-64 System Abstraction Layer Specification

intel.

If amemory semaphore mechanism is chosen, APswill disable the interrupts and poll the memory
semaphore for the unique value that matches the contents of their Local 1D Register in bits 16-31
and avaue of OXFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake up one
AP at atime. The AP will clear the memory semaphore to zero, execute the next phase of SAL code
and, if necessary, return to the wait loop.

Figure 3-3. Memory Semaphore Format

3.2.3

3-6

L | | | | | | | |
‘31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0

‘ id ‘ eid value of OxFFFF |

L | | | | | | | |
‘63 62 61 60‘59 58 57 56‘55 54 53 52‘51 50 49 48‘47 46 45 44‘43 42 41 40‘39 38 37 36‘35 34 33 32‘

‘ ignored

SAL exports details of the wake-up mechanism to the OS through the SAL System Table (refer to
Table 3-2) so that the OS kernel code on the BSP may wake up the APs when appropriate. While
memory semaphore mechanism may be used by the BSP and APs during the platform initialization
phase, SAL shdll indicate only the external interrupt wake-up mechanism to the OS. The OS shdll
not use the indicated external interrupt vector for its purposes until it takes over the IVA. The OS on
the BSP will invokethe SAL_SET_VECTORS procedure to set the continuation point for the APs
within the OS kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will
transition the APs to the registered OS_ BOOT_RENDEZ entrypoint.

Platform Initialization Phase

This phase is primarily executed on the BSP. The APs will execute some of the steps as described
below. This phase will perform the following functions, the ordering of whichis
implementation-dependent:

1. Initidizethe VA to point to a 32 KB Interrupt Vector Table (IVT) in ROM. Some SAL
implementations may choose to build the IVT in RAM after finding the first 64 MB of
memory. This step must be accomplished on all the processors in a M P-environment.

2. Initialize the system fabric and chipsets. The method of handling the initialization is
implementation-dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not be re-initialized. On a cold
boot, SAL will initialize at least thefirst 4 MB of memory for BSP |ate self-test. This
self-test isdone by calling the PAL_TEST_PROC procedure which returns information on
whether the processor is healthy or not. This PAL procedure tests the path from the processor
to the memory through the caches and returns information on whether the processor is fully
functional (not functionally restricted). This PAL procedure will not return to the SAL if the
processor under test experiences a catastrophic failure. SAL must contain necessary logic to
select anew BSP, if necessary. SAL shall shut down the system if thereis not even asingle
healthy or a performance restricted processor on the system.

After this point, the memory stack and RSE can be tested and enabled in the | A-64 system
environment.

4. Issuearendezvousinterrupt to wake up APsfor alate self-test using the PAL_TEST_PROC
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that
experience a catastrophic failure during the late self-test. On completion of late self-test, the

IA-64 System Abstraction Layer Specification

10.

11.

12.

13.

14.

15.

16

BSP will set the APs back to the rendezvous state (EM_Rendezvous 2 in Figure 3-2). After
this stage, caches may be relied upon.

Search for consol e using implementation-dependent algorithms. If found, initialize the
console so that the progress of the boot may be displayed.

Determine and initialize memory. This stepis not performed if SAL_RESET isentered from
SAL_INIT. RAM test isimplementation-dependent. RAM test includes test of refresh logic
and testing al the address lines for shorts. On | A-32 systems, memory controllers dias the
ROM at OXEOO0QO to OxFFFFF and thereby permit memory autoscan algorithm to be run
from the aliased ROM at 0xEOOQO to OxFFFFF. Since memory aliasing is not a requirement
for the 1A-64 platforms, the autoscan function needs to be performed by the firmware SAL
codeinthelA-64 1SA.

Initidlize the interrupt controllers with al interrupts disabled.

Allocate memory for use by PAL and SAL near the top of physical memory. This area
should be below 4 GB if | A-32 code needsto call the | A-64 SAL code, since | A-32 code can
only address memory up to 4 GB.

Copy the PAL into memory using the PAL_COPY _PAL procedure. The PAL codein
memory must be aligned such that the entire PAL space in memory may be covered by one
Instruction Tranglation Register (ITR). It isvery desirable to copy PAL code and SAL code
to contiguous locations in order that the OS may cover the entire space using the same I TR.
Refer to the Intel® IA-64 Architecture Software Developer's Mant@l PAL's requirements
on ITR/DTR.

Note: Until this step, the following floating-point transcendental instructions cannot be
executed from the |A-32 instruction set:

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X,
FYL2XP1

Copy SAL, PMI and IA-32 code to memory. The 1A-32 BIOS code will be copied to the
appropriate addresses in the address of 0x000C_0000 to 0xO00F_FFFF. The 1A-64 portion
of the SAL code will be copied to a high memory address which must be above 1 MB.
Copying code to RAM speeds up the boot sequence and additionally permits some portions
of the code to be held in compressed format in ROM. Firmware code may then be write
protected using the TLB or chipset features.

Set up an IVT in memory aligned on a 32 KB boundary and point the IVA register to it. This
step must be accomplished on all the processors in a MP environment.

Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on all
the processors in a MP environment.

Call the PAL_MC_REGISTER_MEM procedure specifying where PAL code may deposit
some minimal processor state information so that PAL code has sufficient resources to
perform the necessary machine check or INIT processing. Enable the BERR and BINIT
sampling and signaling by invoking the PAL_BUS_SET_FEATURES procedure. Set the
CMCI, MCA and BERR promotion strategy by invoking the
PAL_PROCESSOR_SET_FEATURES procedure. These steps must be accomplished on all
the processors in a MP-environment.

Process configuration information in NVRAM and perform full chipset configuration. If
NVRAM information is invalid, initialize NVRAM to default configuration values. Refer to
the EFI Specification for details.

Initialize and configure 1/O buses. Walk all buses, identify all resource requirements and set
necessary range registers of chipsets. At this point, the complete system topology and
addresses of all fabric segments are known.

. Construct the ACPI Tables, SAL System Table and other common data structures.

IA-64 System Abstraction Layer Specification 3-7

3.24

3-8

17.

18.

1

intel.

Execute the option ROMs as needed. If these contain 1A-32 code, some of the |A-32
instructions may cause traps into the 1 A-64 and suitable support needs to be provided by the
|A-64 trap/fault handler code. These interactions are more fully described in Volume 2,
Chapter 10 of the Intel® IA-64 Architecture Software Developer's Manwd Chapter 7.
As aside effect of supporting |A-32 Option ROMs, it is possible to have some of the SAL
code implemented in 1A-32 |SA.

Copy the EFI code into memory and transfer control to it. EFI firmware will search for
bootable devices, |oad the OS Loader image and transfer control to it. EFI may utilize the
underlying SAL and |A-32 BIOS layers for accesses to platform devices. Refer to the EFI
Specificatiorfor interface description.

OS Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specificatiorfor details of booting |A-64
OSes. If the selected OSisalegacy 1A-32 OS, SAL does the following:

SAL will construct a MP Information Table that provides the mapping between the 1/0
SAPIC ID, EID values and the /O APIC ID vaue for use by the Legacy |A-32 OS. This
table is provided as a parameter to the PAL_ENTER_IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a
maximum of 16 processors while booting a Legacy |A-32 OS. SAL will keep any additional
processors in aloop within SAL and these processors shall not invoke the
PAL_ENTER_IA_32 ENV procedure.

SAL will assign unique 4-bit id values for the 1/O APIC entries of the MP table based on the
16-bit eid, id fields of the corresponding SAPIC entries. Theid values assigned by SAL for
the Local APIC and the I/O APIC entries may overlap.

SAL will provide the physical address of non-existent memory of a minimum of 4K bytes.
Thisareawill be specified in the Memory Descriptor Table (Table 3-5) with the Memory
typeclassification of Non-existent Memory.

The PAL_ENTER_IA_32 ENV procedure also enables SAL to emulate some 1/O ports not
present on the platform. SAL conveysinformation on the emulated portsin the SAL 1/0
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® IA-64 Architecture Software
Developer's Manualor details.

Construct Memory Descriptor Table entries suitable for the platform.

Load one sector of the Master Boot Record (MBR) code from the boot device at address
0x7C00. Verify that the last two bytes of the sector end with Ox55 OxAA.

Note: In thisdocument, the term sectorrefersto alogical block of 512 bytes.

Determine the amount of memory needed by PAL in support of 1A-32 OSes by invoking
PAL_COPY _INFO procedure and allocate the same with the requested alignment.
Transition the processor to the | A-32 system environment and jump to the MBR code | oaded
at 0:7C00. This switch is effected by calling PAL_ENTER_IA_32 _ENV procedure. (Refer
to the Intel® 1A-64 Architecture Software Developer’s Manpadhe return addressin SAL
and the address of SAL_PROC are passed as aparameter to thiscall. SAL shall set theinitial
1A-32 stack to 0:0x7c00 (SS:ESP).

This PAL procedure will set up the appropriate memory attribute values based on the
Memory Descriptor Table (Refer Table 3-5). If the |A-32 OS exits by executing a JM PE

IA-64 System Abstraction Layer Specification

instruction, PAL will return to the return address in SAL. When SAL regains control, it will
de-allocate the memory allocated to PAL in support of |A-32 OSes and attempt to boot a
different OS.

6. Some additional parameters are needed in a MP environment. The
PAL_ENTER_IA_32_ENV procedure requires an input flag that indicates whether the call
is being made on the BSP or APs and a count of the processors that have already been
transitioned to the A-32 system environment. Also, the PAL_ENTER_IA_32_ENV
procedure requiresthat the first processor reach the | A-32 starting address before subsequent
processors invoke the procedure.

SAL implementation is ssimpler if the BSP transitions to the | A-32 system environment last.
For example, the BSP can instruct APsto call the PAL_ENTER_|A_32_ENV procedure,
oneat atime. The APswill specify a starting address within the first MB of memory. The
IA-32 code at thislocation will perform the check-in to inform the BSP that the transition to
| A-32 system environment is completed, disable interrupts and go into a spin loop awaiting
the Startup IPI from the BSP.

Once all the APshavetransitioned to the | A-32 system environment and checked in, SAL on
the BSP will invokethe PAL_ENTER_IA_32 ENV procedure and specify the starting
address as 0:7C00 where the MBR code from disk has been loaded. The
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs
such that all processors have an identical view of the platform’s memory attributes.

The 1A-32 OS would be loaded eventually and this will send APIC INIT IPIs followed by
APIC Startup IPIs to the APs. PAL's APIC emulation layer on the BSP will trap the APIC
ICR writes and will eventually transition the APs to the starting address corresponding to the
vector specified in the Startup IPI.

3.25 Firmware to OS Loader Handoff State

The handoff to an IA-32 OS is compatible with the PC-AT industry standards. The handoff from
firmware to the 1A-64 OS Loaders is fully described inHié Specification. Included in the
handoff are:

« The pointer to the SAL System Tablgetion 3.2.Y

* The pointer to the Root System Description Pointer as describedAahteced
Configuration and Power Interface Specification.

The state of the IA-64 system registers at the time of handoff to the OS Loader is as follows:
* AR contents are SAL implementation-dependent except the following:

* CFM: The backing store shall contain a minimum of 8 KB of available storage space
defined in the SAL Boot Services data area.
* RSC will indicate enforced lazy mode, little-endian
* GR contents are SAL implementation-dependent except:
¢ GR12 = Stack pointer with a minimum of 8 KB of available storage space defined in the
SAL Boot Services data area.
* PSR:
PSR.ac =1 (alignment check enabled)
PSR.ic = 1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending

interrupts.
PSR.it, PSR.dt, PSR.rt = 0 (instruction translation, data translation and RSE translation off)

IA-64 System Abstraction Layer Specification 3-9

3.2.6

3.2.7

PSR.bn = 1 (register bank 1 selected)
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits=0
* CRs:
DCR: Bus lock setting (DCR.Ic) is platform implementation-dependent, all other bits of DCR
=0
IVA = physical address of a SAL implementation-dependent IVT
PTA.ve = 0 (if the virtual hash page table (VHPT) is disabled)
LID = the unique id/eid value for this processor
Data Breakpoint Registers — DBRs: Same as on entry to SALE_ENTRY
Instruction Breakpoint Registers — IBRs: Same as on entry to SALE_ENTRY
* RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registers will have
implementation-dependent values except that RRs 1-3, if non-zero, will contain Region ID
values of 0x1001-0x1003 respectively.
Protection Key Registers — PKRs, are set to 0.
* TLB
TRs: ITR(0) will map an area that includes the SAL's IVT and PAL code. All other TR entries
are invalidated
TCs: These are implementation-dependent but will likely contain identity mappings (virtual
address to physical address)
» Caches
Enabled, coherent and consistent with the contents of memory

OS_BOOT_RENDEZ

OS_BOOT_RENDEZ is the entrypoint for OS-dependent MP rendezvous code. The OS code on
the BSP registers this entrypoint by invoking SAL_SET_VECTORS, supplying the physical
address of OS code that is 16-byte aligned. SAL exports details of the wake-up mechanism to the
OS through the SAL System Table (refeffale 3-1) so that the OS kernel code on the BSP may
wake up the APs when appropriate. When SAL on the APs receives the wake-up, it will transition
the APs to the registered OS_BOOT_RENDEZ entrypoint. Refeettion 3.2.2.1, “Rendezvous
Functionality”for additional details.

The state of the IA-64 system registers at the time of handoff to the OS_BOOT_RENDEZ is
similar to that for the BSP.

SAL System Table

SAL uses the SAL System Table to export a variety of information to the OS Loader. The pointer to
the SAL System Table is provided by EFI to the OS Loader. Refer &Fh®pecification for

handoff details. If a recovery condition is present, the SAL System Table is not built and a pointer
value of 0 is provided.

The SAL System table begins with a header which is describEabie 3-2 The SAL System

Table header will be followed by a variable number of variable length entries. The first byte of each
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each
entry type will have a known fixed length. The total length of this table depends upon the

IA-64 System Abstraction Layer Specification

configuration of the system. OS software must step through each entry until it reachesthe
ENTRY_COUNT. The entries are sorted on entry type in ascending order. 32 describes each entry

type.
Table 3-2. SAL System Table Header

Offset Length

Field (in bytes) | (in bytes) Description
SIGNATURE 0 4 The ASCII string representation of
“SST_", which confirms the presence of
the table.
TOTAL_TABLE_ LENGTH 4 4 The length of the entire table in bytes,

starting from offset zero and including
the header and all entries indicated by
the ENTRY_COUNT field. This field aids
in calculation of the checksum.

SAL_REV 8 2 The revision number of the 1A-64 SAL
specification supported by the SAL
implementation in binary coded decimal
(BCD) format.

Byte 8 — Minor

Byte 9 — Major

ENTRY_COUNT 10 2 The number of entries in the variable
portion of the table. This field helps
software in identifying the end of the
table when stepping through the entries.

CHECKSUM 12 1 A modulo checksum of the entire table
and the entries following this table. All
bytes including the Checksum bytes
must add up to zero.

RESERVED 13 7 Unused, must be zero.

SAL_A_VERSION 20 2 Version Number of the SAL_A firmware
implementation in BCD format.

Byte 20 — Minor

Byte 21 — Major

SAL_B_VERSION 22 2 Version Number of the SAL_B firmware
implementation in BCD format.

Byte 22 — Minor

Byte 23 — Major

OEM_ID 24 32 An ASCII identification string which
uniquely identifies the manufacturer of
the system hardware. This string can be
exactly 32 bytes in length or shorter if
null terminated. Compliance with the
SAL specification requires that this string
be unique with respect to all other
manufacturers. It is forbidden to use
another manufacturer's identification
even if the system is otherwise identical.

IA-64 System Abstraction Layer Specification 3-11

Table 3-2. SAL System Table Header (Continued)

Offset Length
(in bytes) | (in bytes)

PRODUCT_ID 56 32 An ASCII identification string which
uniquely identifies a family of compatible
products from the manufacturer. This
string can be exactly 32 bytes in length
or shorter if null terminated.

Field Description

RESERVED 88 8 Unused, must be zero.

Following are the entry types of entries that follow the SAL System Table Header. Unless
otherwise stated, there is one entry per entry type.

Table 3-3. SAL System Table Entry Types

Entry Type? Erzitr:ybl;fgs%th Description
0 48 Entrypoint Descriptor
1 32 Memory descriptor (one entry for each contiguous block with
similar attributes)?
16 Platform Features Descriptor
32 Translation Register Descriptor (one entry for each TR used by
SAL at the time of handoff to the OS)
4 16 Purge Translation Cache (PTC) Coherence Descriptor
5 16 AP Wake-up Descriptor

a. All other types are reserved.
b. Not required for IA-64 OSes.

3.2.7.1 Entrypoint Descriptor Entry

The Entrypoint Descriptor entry provides the addresses in memory of PAL_PROC, SAL_PROC

that may be used by the OSto invoke the procedures within the PAL and the SAL. When the OS

calls SAL_PROC, the gp register must contain the physical or virtual address of the $#l's
value specified in the Entrypoint Descriptor, depending on the mode in which the SAL_PROC
procedure is called.

Table 3-4. Entrypoint Descriptor Entry Format

_Offset _Length Description
(in bytes) | (in bytes)
0 1 Entry type = 0 denoting Entrypoint Descriptor type
1 7 Reserved (must be zero)
8 8 Physical address of the PAL_PROC entrypoint in memory
16 8 Physical address of the SAL_PROC entrypoint in memory
24 8 Global Data Pointer (physical address value) for SAL procedures
32 16 Reserved (must be zero)

3-12 IA-64 System Abstraction Layer Specification

3.2.7.2 Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries are used only while booting an 1A-32 OS. |A-64
OSes obtain similar information from the EFI firmware component. The Memory Descriptor Table
entries describe al the main memory, firmware memory, memory mapped 1/0O, etc., in the system
address space as well as the memory attributes currently set by SAL. Each contiguous block with
similar memory attribute (WB, WC, UC or UCE) must be aligned on a 64KB boundary as a
minimum, for optimal TLB management. Note that memory usage values (byte 7 of the MDT
entry) may change within a 64KB memory block and henceit islegal to have more than one MDT
entry describing a 64KB memory region as long as the memory attribute (WB, WC, UC or UCE)
does not change within that 64K block.

SAL must provide entries that cover the entire system address space. The firmware must indicate
its memory usage in order that the same may be not trampled by the OS. Thus, if the SAL uses an
underlying |A-32 BIOS layer for part of its functionality, it must report memory usage for the real
mode interrupt vector table (0-Ox3FF), the BIOS Data area (0x400-0x4FF) and the Extended BIOS
Data area (downwards from 640K) as Boot Services Datain the Memory Usage field of the
Memory Descriptor Table entries.

The EFI firmware component communicates the SAL's requirements for virtual address mappings
to the OS. Once the OS takes control of the memory management and the IVA, it must provide TLB
mappings for both the code and data accesses to the memory areas required by SAL, if those areas
are accessed in virtual mode. The OS must register these virtual addresses prior to invoking SAL
procedures in virtual mode.

Table 3-5. Memory Descriptor Entry

Offset Length Description?
(in bytes) | (in bytes) (unsigned integers)

0 1 Entry type = 1 denoting Memory Descriptor entry type

1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes

2 1 Encoded value of current Memory Attribute® setting in bits 0-2:
000: WB
100: UC
101: UCE
110: WC

1 Page Access Rights set up by SAL for the memory rangeb:

4 1 Memory AttributesP supported:
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC

5 1 Reserved (must be zero)

IA-64 System Abstraction Layer Specification 3-13

Table 3-5. Memory Descriptor Entry (Continued)

Offset Length Description?
(in bytes) | (in bytes) (unsigned integers)
6 2 Memory Type (byte 6) Memory Usage (byte 7)
0 = Regular Memory 0 = Unspecified®
1 =PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memory¢
9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memory®
128-255 = Reserved for OEM
1 = Memory mapped I/O | 0 = Unspecified
1 =120 Hidden space hole
2 =Video Memory
3-127 = Reserved
128-255 = Reserved for OEM
2 = SAPIC IPI Block 0 = Unspecified
3 =1A-321/0 Port space | 0 = Translated by processor to I/O cycles
4 = Firmware address 0 = Unspecified
space
9 = Bad Memory 0 = Unspecified
10 = Non-existent 0 = Unspecified
Memory (Black hole)
8 8 Physical Address of Memory
16 4 Length (multiple of 4K pages)
20 4 Reserved (must be zero)
24 8 OEM Reserved

a. All unused values are reserved.
b. Refer to the Intel® IA-64 Architecture Software Developer's Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.
d. This memory is available to the OS after it reads the Advanced Configuration and Power Interface

Specification tables.
e. This area is not visible in the IA-32 OS environment.

The SAL also provides the memory type and usage information to the EFI. Refer to the EFI

Specification for details. The following table specifies the mapping between Memory Descriptor
Table entries and the information provided by the SAL to the EFI.

3-14

IA-64 System Abstraction Layer Specification

intel.

Table 3-6. Memory Type Information Provided to the EFI

Memory Type

Memory Usage

EFI Memory type

0 = Regular Memory

0 = Unspecified

1 =PAL Code

2 = Boot Services Code

3 = Boot Services Data

4 = Runtime Services Code
5 = Runtime Services Data

6 = IA-32 Option ROM

7 = IA-32 System ROM

8 = ACPI Reclaim Memory

9 = ACPI NVS Memory

10 = SAL PMI Code

11 = SAL PMI Data

12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped I/O

<all values>

Information not provided to the EFI

2 = SAPIC IPI Block

0 = Unspecified

Information not provided to the EFI

3 =1A-32 1/0 Port space

0 = Translated by processor to I/O
cycles

EfiMemoryMappedIOPortSpace

4 = Firmware address space

0 = Unspecified

EfiRuntimeServicesData

9 = Bad Memory

0 = Unspecified

EfiUnusableMemory

10 = Non-existent Memory
(Black hole)

0 = Unspecified

Information not provided to the EFI

3.2.7.3

The Platform Features Descriptor Entry describes the features implemented on the platform. Refer

Platform Features Descriptor Entry

to the | A-64 Platform Architecture Guide for implementation considerations of these platform

features.

Table 3-7. Platform Features Descriptor Entry

Offset Length Descrintion
@in bytes) | (in bytes) p

0 1 Entry type = 2 denoting Platform Features type

1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented
Bit 1: 1 if the chipset supports redirection hint for interrupt messages
originating from the platform (lowest priority interrupt)
Bit 2: 1 if the chipset supports redirection hint for IPI messages
originating from the processors
Bits 3-7 = Reserved

2 14 Reserved

IA-64 System Abstraction Layer Specification

3-15

3.2.7.4 Translation Register Descriptor Entry

The Trand ation Register Descriptor entries describe the parameters used by the SAL during

insertion of the TRs. These entries will be used by the OS to purge SAL's TRs after the OS takes
over the IVA.

Table 3-8. Translation Register Descriptor Entry

Offset Length L
(in bytes) Description
in bytes)
0 1 Entry type = 3 denoting the Translation Register Descriptor type
1 Type of Translation Register:
0: Instruction Translation Register
1: Data Translation Register
Other values: Reserved
1 Translation Register number
Reserved
Virtual address of the area covered by the Translation Register. Bits
61-63 of this field indicate the Region Register number.
16 8 Encoded value of the page size covered by the Translation Register.
Refer to the Intel® IA-64 Architecture Software Developer’s Manual,
Addressing and Protection chapter for the format of this field.
24 8 Reserved
3.2.75 Purge Translation Cache Coherence Domain Entry (optional)

The purge translation cache (PTC) Coherence Domain Entry describes the number of coherence
domains and the scope of PTC instruction propagation for each domain. This entry is optional. It is

required only for MP systems that have multiple coherence domains.

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives
in. SAL captures this information in an implementation-dependent manner and passes the same to

the OS.

Table 3-9. Purge Translation Cache Coherence Domain Entry

) Offset _Length Description
(in bytes) | (in bytes)
0 1 Entry type = 4 denoting PTC Coherence Domain Entry type
1 3 Reserved (must be zero)
4 4 Number of coherence domains for the platform
8 8 64-bit memory address of the coherence domain information

IA-64 System Abstraction Layer Specification

The coherence domain information isan array of length of (16* Number of coherence domains). As
shown in Table 3-10, for each coherence domain, there will be two information fields:

1. Number of processorsin the TLB coherence domain.

2. 64-bit memory address of alist of Local ID register values for the processors within the TLB
coherence domain. Each processor will require two bytes of memory (id field in low order
byte and eid field in high order byte) to represent the Local 1D information.

Thisinformation is represented in Table 3-10.

Table 3-10. Coherence Domain Information

Offset Length

(in bytes) | (in bytes) Description
0 8 Number of processors in TLB coherence #1
8 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #1
16 8 Number of processors in TLB coherence #2
24 8 64-bit memory address of a list of Local ID register values for the

processors within the TLB coherence domain #2

16*(N-1) 8 Number of processors in TLB coherence #N

8+16*(N-1) 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #N

3.2.7.6 Application Processor Wake-up Descriptor Entry (optional)

The AP Wake-up Descriptor Entry describes the mechanism for waking up APsin an MP
environment. Refer to Section 3.2.2.1, “Rendezvous Functionalityt details on OS usage of this
entry. This entry is required for MP configurations.

Table 3-11. Application Processor Wake-up Descriptor Entry

_Offset _Length Description
(in bytes) | (in bytes)
0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type
1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved
2 6 Reserved (must be zero)
8 8 External Interrupt vector in the range of 0x10 to OxFF

IA-64 System Abstraction Layer Specification 3-17

3.3

3.3.1

IA-64 OS Loader Requirements

The firmware will jump to the |A-64 OS Loader with the handoff state described in the EFI
Specification. Included in this state information is a pointer to the SAL procedures the OS can
invoke. These procedures are described in Chapter 9.

This section describes the requirements on the OS Loader while operating under the SAL execution
environment.

Fault Handling

This section describes the guidelines to the OS Loader code as regards fault handling.

After the OSis completely loaded, it will take over the VA, and replace the SAL environment with

its own memory management. Until that time, the OS shall use SAL's virtual memory environment
— IVA, Interrupt controller mode, TC mappings, etc., and it shall not change any of these
resources.

The OS Loader code may be executed in physical mode with interrupts disabled, or in virtual mode
with Instruction, Data and RSE translation on (PSR.it =1, PSR.dt = 1, PSR.rt = 1). While executing
in virtual mode, the OS Loader code is permitted to cause TLB faults for which SAL shall provide
the appropriate fault handlers. These TLB faults are:

« Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does
not implement the VHPT. If VHPT is not used, the Page Table Address (PTA) need not be
initialized. SAL will turn off the PTA.ve bit to disable the processor walking the VHPT. VHPT
is an optional feature of the IA-64 architecture. Avoiding VHPT usage also permits the I1A-32
support code to operate out of ROM.

Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not
implement the VHPT.

VHPT related faults: VHPT translation fault, Data TLB fault and Nested TLB fault, if SAL
implements VHPT.

Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level

set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with
unified TLBs, Access Rights faults may surface if the TC is present but the required page
permissions are not present, e.g. TC is present with RW page access rights but RX page access
rights is needed for instruction execution.

External interrupt: Hardware interrupts will be received by SAL in the 1A-64 ISA. This code
will read the IVR register. If the vector read is 0, it signifies an interrupt from the 8259
interrupt controller and SAL must issue a load to the architected INTA_address (default
address OxFEFE_0000) in the processor interrupt delivery block to issue an interrupt
acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259. SAL will then
jump to the appropriate interrupt handler using its internal tables. If the interrupt needs to be
reflected to |1A-32 code, the address will be derived from the 1A-32 Interrupt Descriptor Table.
The OS Loader is restricted from sending IPI messages (i.e. causing bits in the SAPIC IRR
registers to be set) with vector values other than the one specified in the AP Wake-up
Descriptor Entry (refer tdable 3-1).

* SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid
Page not present, Data Dirty bit and Data Access bit faults.

IA-64 System Abstraction Layer Specification

3.3.2

3321

* SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key
miss, Data Key miss and Key Permission faults.

¢ Speculation fault: Speculation faults are caused by CHK.S, CHK.A and FCHK instructions.
SAL will provide the transition mechanism to the recovery code. SAL and OS Loader code
must be compiled with speculation off, thereby avoiding the use of the above instructions.
Turning off speculation should not have any impact on performance since most of SAL code
relies on strong ordering.

« SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT entries
created by OS Loader code are preserved across SAL calls and SAL's fault handlers.

« Divide by zero: SAL shall display an error message for the Break interrupts caused by the
run-time checking of integer divide by zero. Refer tolth&4 Software Conventions and
Runtime Architecture Guide.

The OS must not rely on any other fault handlers installed by SAL. SAL will display an error
message if an unsupported fault is encountered. SAL will not provide support for the following
faults:

* Nested TLB fault: ITR(0) will map the SAL's IVT and the code areas covering SAL's fault
handlers. All fault handlers in SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested
TLB fault that can occur while accessing the fault handler’s local variables and data structures.

« NaT Consumption fault: NaT Consumption faults are generated by a load, store or move that
uses a source register containing a NaT value or by accessing a NaTPage. This fault can be
avoided by compiling the OS Loader code with speculation off.

Unaligned fault: The OS Loader shall not make data references to misaligned data.
General Exception fault: The OS Loader shall not cause the general exception fault by

executing illegal operations, invoking SAL procedures in physical/virtual mode with

arguments specifying unimplemented data addresses.

Floating-point faults: The OS Loader shall not disable accesses to the floating-point register
sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point exceptions

Other traps/faults: The OS Loader must not cause other traps or faults such as Debug, Single
step, Taken branch, etc. Normally, the OS kernel provides these services after it takes over the
IVA.

Additional fault handlers to support IA-32 execution are describ&thapter 7

Memory Management Resources Usage

This section describes SAL's usage of various memory management resources and provides
guidelines for their use by the OS Loader code.

TLB Resource Partition

SAL will use only TCs and the ITR(0). Use of several TRs by SAL may cause problems with
booting of some I1A-64 OSes. The OS Loader is free to use Translation Registers (TRs) other than
ITR(0). The advantage of this resource partition is that hardware interrupts which cause a transition
to SAL will not affect the TRs set up by the OS Loader. Ideally, the OS Loader will set up the TRs
for its memory mappings and not cause TLB faults. However, should the OS Loader code cause a
TLB miss, the TLB Miss handler in SAL would automatically install a TC with identity mapping.

IA-64 System Abstraction Layer Specification 3-19

3.3.2.2

3.3.2.3

intel.

Therestriction on ITR(0) is not relevant after the OS takes over the memory management and the
IVA.

Useof TCsin SAL code should not cause any performance problems since SAL isnot performance
critical. Most of the SAL code will write and read back memory addresses traversing the entire
physical address space. Use of additional TRswill not provide improved performance. SAL will
primarily be limited by memory and 1/O speeds.

SAL will use TC entries with length of 4KB by default and will try to coalesce contiguous entries
with similar attributes into larger page sizes.

Identity Mapping Usage

IA-64 virtual addressis 85 bitswide and | A-64 physical addressis 63 bits wide. Bits 0 to 60 of the
virtual address provide the virtual page number and offset. Bits 61 to 63 of the virtual address are
used as an index into the Region Registers which supplies a Region ID value that can be up to 24
bits wide. Thus the 85-bit virtual address comprises the low order 61 bits of the virtual address and
the 24-bit Region ID. This 85-bit virtual address istransformed into a 63-bit physical address by
the 1A-64 TLB mechanism as described in the Intel® IA-64 Architecture Software Developer’s
Manual

SAL will use identity mappings (virtual addresses = physical addresses). The advantage of identity
mapping is that the same pointer can be used to access the same memory location regardless of the
state of the PSR.dt bit.

Unique Region IDs for SAL

The firmware will load the OS Loader and jump to it. The OS Loader will load the rest of the OS
using the firmware boot services procedures. While SAL can operate with identity mapping, there
may be a need for the OS Loader to use a non-identity mapping. As an example, there may be an
1/0 device at physical address 2.5 GB for which SAL would have established an identity mapping
with uncacheable memory attribute. The OS Loader may need to load additional layers of software
and fix up address relocations using virtual addressing. The OS Loader may need to load software
at physical address 0.5 GB mapped to virtual address of 2.5 GB. When OSrefersto the virtua
address 2.5 GB, it isreferring to RAM at 0.5 GB and when SAL refersto 2.5 GB virtua address, it
isreferring to the I/O device at 2.5 GB physical address. Clearly, OS Loader cannot usethe TLB
mapping set up by SAL for this case.

This problem can be solved by using different Region registers and Region ID values for SAL and
OS. Differing Region ID vaues ensure that earlier TC/TR entries with a different Region ID value
no longer cause TLB hits. SAL will use Region ID of 0x1000 for al its TLB mappings, if physical
address spaceis|essthan or equal to 261 bytes and OS L oader shall be restricted from using Region
ID values of 0x1000 to 0x1003 until OSis ready to take over the memory management and the
IVA. If thisrestriction is not followed by the OS L oader, a machine check abort might result when
SAL attemptstoinsert a TC entry using the ITC.i or ITC.d instruction.

Since SAL codeis 64-hit, if the physical address spaceiis less than or equal to 281 bytes, SAL will
be capable of addressing the entire physical address space using Region Register 0. SAL will use
only Region Register 0 and set up the same with a Region |D value of 0x1000, if physical address
spaceislessthan or equal to 261 bytes. If physical memory islarger, it will load Region Registers 1
to 3 with Region ID values of 0x1001 to 0x1003 respectively.

IA-64 System Abstraction Layer Specification

3.3.3

The OS Loader will need to refer to the data structures common to SAL and OS in the process of
loading the OS kernel. Similarly, the OS will need to pass parametersto SAL through pointersin
Memory Stack Pointer (SP) and Global Data Pointer (GP) registers. SAL and OS must refer to
these common data structures using Region Register 0, i.e. the virtual addresses used to address the
common data structures must have bits 61-63 set to 0.

While operating in the virtual mode, the OS Loader shall not change the contents of Region
Registersthat arein use by SAL. If the valuein Region Register 0 is changed, accesstothe VT is
lost and the system will crash. Thisrestriction is not relevant after the OS takes over the memory
management and the I VA.

Should the OS Loader set up any of the Region Registersfor its use, it must
¢ Set theve bit in the Region Register to 0, to disable the VHPT.
» Set theps bits value to indicate preferred page size of 4KB.

Other Restrictions on the OS

The OS shall not change the values of the following system resources:
¢ LID, the unique id/eid value for this processor.

* DCR.Ic, the Bus lock setting for the platform, if the same is set to 1. Note that the
PAL_BUS_SET_FEATURES procedure may be invoked to execute the locked transactions as
a series of non-atomic transactions. Refer tdrited® 1A-64 Architecture Software
Developer's Manualor details.

» Physical address of the Processor Interrupt Block Address.

* Physical address of the IA-32 1/O Port Block.

The OS may lower the CMCI, MCA and BERR promotion strategy set by SAL by invoking the
PAL_PROCESSOR_SET_FEATURES procedure, but this is not recommended.

IA-64 System Abstraction Layer Specification 3-21

3-22

IA-64 System Abstraction Layer Specification

intel.

Machine Checks 4

Machine checks, including Machine Check Aborts (MCAS), Corrected Machine Check Interrupts
(CMC Interrupts), and expected machine checks cause processor execution to vector to
PALE_CHECK codeinthe |A-64 ISA. Pleaserefer to Volume 2, Chapter 11 in the Intel® I1A-64
Architecture Software Developer’'s Mandat details regarding PALE_CHECK processing. Also
refer to the IA-64 Error Handling Guiddor error handling from a system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY which, in
turn, branches to the SAL_CHECK entrypoint in the |A-64 | SA. The entry conditions for

SALE _ENTRY are described in the Intel® 1A-64 Architecture Software Developer’s Manuitis
chapter defines the actions required of SAL_CHECK as well as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.

Figure 4-1. Overview of Machine Check Flow

| |
PAL
L New/Interrupted
context
OS Corrected MC
Error /
—| PALE_CHECK || N A -/
—
- — /
Return - P
e
|
| SAL_CHECK | _ __ _ Optional
| |

4.1

IA-64 System

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These
may still be fully or partially recoverable at the OS layer. The control flow differs between CMCs
and uncorrected machine checks. For corrected machine checks, the OS CMC interrupt handler
will be optionally invoked some time after returning to the interrupted process. Section 4.1
describes the functionality and processing steps for the uncorrected machine checks and

Section 4.2 describes the corrected machine checks.

SAL_CHECK

SAL_CHECK hasthe basic responsibility for the following:
* Log processor and platform error information.
« Save the processor and platform state information.
« Perform any platform hardware-specific corrections.

Abstraction Layer Specification 4-1

4.1.1

42

intel.

* For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.
» Clear the error log resources and re-enable future information collection.

* Halt the processor or platform as necessary.

» Handle MP situations.

In addition, it is useful to note that where hardware/firmware cannot fix a machine check condition,
SAL_CHECK should provide the necessary information and conditions to allow the OS to recover
whenever possible. It is expected that most of the error recovery is performed at the OS_MCA
layer. The amount of state information saved by SAL is implementation-dependent and the
SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state
information.

SAL_CHECK Processing Details

During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code where it

may deposit some minimal processor state information so that PAL code has sufficient resources to
perform the necessary PALE_CHECK processing. This step is performed on all the processors in
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED
procedure to notify PAL that a machine check may surface and that PAL must not attempt to correct
the error. If the machine check was expected by SAL, SAL will check the results of the operation,
invoke PAL_MC_EXPECTED to notify PAL that machine check is no longer expected, and
resume execution by calling PAL_MC_RESUME.

When an unexpected machine check event has occurred and SAL_CHECK is entered, it is the
responsibility of SAL_CHECK to call back to PAL code (PAL_MC_ERROR_INFO), in order to
retrieve processor-specific error information which pertains to the machine check taken. In
addition, SAL_CHECK should interrogate the platform for any platform-specific information

which pertains to the machine check condition. This information is preserved in a
platform-dependent location. Once the processor error logging information is retrieved,
SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging resources
for capturing future machine check error information. A similar task is necessary to enable platform
error logging resources for future events. The OS does this by invoking
SAL_CLEAR_STATE_INFO.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch”
machine check processor to accumulate all the error logs at the platform level and continue with the
machine check processing.

SAL is responsible for reporting the state information to the OS via SAL_PROC get state
information calls so that the OS can make the determination to:

* Fix the error and return,
» Create a new context and continue, or
* Reset the platform.

PALE_CHECK and SAL_CHECK shall not hide any architectural state from the OS_MCA layer

and cannot make assumptions on whether OS_MCA would return to PAL or SAL. This permits the
OS_MCA layer to run unencumbered. OS_MCA can save the processor and platform state and
re-enable future machine checks as soon as possible. Otherwise, OS_MCA would be constrained to

IA-64 System Abstraction Layer Specification

Figure 4-2. Machine Check Code Flow

4.2

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks.

operating with machine checks disabled in order to preserve the architectural information at the
PAL and SAL layers.

When the OS registers the OS_MCA entrypoint with SAL, it also supplies the length of the code
(or at least the length of thefirst level OS_MCA handler). SAL computes and saves the checksum
of this code area. Prior to entering OS_MCA, itis SAL_CHECK's responsibility to ensure that the
OS_MCA vector isvalid by verifying the checksum of the OS_MCA code. There may aso be
some platform-specific reasons which render the OS_MCA handler invalid. For example, since the
OS_MCA handler isin memory, if the memory controller which handles that portion of memory is
no longer functional, it does not make sense to attempt to branch to that code. If either the
OS_MCA handler was not registered prior to the machine check event, or if the OS_MCA handler
isotherwise invalid, SAL_CHECK may halt or reboot the system. Thisaction is SAL
implementation-dependent. When the OS_MCA returns to the SAL indicating that the error has
been corrected by the OS layer, SAL will call the PAL_MC_RESUME procedure to resume
execution. See Section 4.6.1 for other options.

PAL_RESUME

PAL_CHECK

SAL_CHECK

e

OS_MCA
Correct/Log Error

Fig: Correctable Machine Check

f

PAL_CHECK

SAL_CHECK

OS_MCA
Correct/Log Error

Fig: Uncorrectable Machine Check

000288

IA-64 System Abstraction Layer Specification

Corrected Machine Checks

There are different categories of corrected machine checks pertaining to the | A-64 processor:
¢ Corrected internally by the processor hardware, e.g. single bit data ECC error on L1 cache.

« Corrected by PAL, e.g. double bit data ECC error on a clean L1 cache line, during an
instruction fetch operation. To recover from this error, PAL layer may need to invalidate the LO
instruction cache and flush the L1 unified cache.

43

4.3

4-4

intel.

» Corrected by SAL. These are primarily platform errors that can be corrected by SAL without
immediate involvement by the OS, e.g. BERR caused by a temperature/voltage sensor
warning.

None of these categories will require rendezvousing of the other processors.

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the
uncorrected machine checks. SAL will log the processor and platform error information and save
the state of the processor and platform. SAL will perform any platform hardware-specific
correction and then call PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option
for generating a Corrected Machine Check interrupt to the OS. The CMCV register specifies the
CMC interrupt vector and its mask status.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the OS CMC
interrupt handler will be invoked some time after returning to the interrupted process unless the
CMC interrupt is masked by the CMCYV register. The CMC interrupt handler of the OS must invoke
SAL_GET_STATE_INFO procedure to obtain the processor information associated with the
error(s). The SAL_GET_STATE_INFO procedure will accumulate all the processor error logs from
PAL and provide the same to the OS CMC interrupt handler.

The amount of state information saved by SAL is implementation-dependent and SAL provides
validation bits indicating the saved state information. Thus, for performance reasons, a particular
SAL implementation may choose not to save ARs, CRs or floating-point registers during a
corrected machine check.

OS_MCA

When the OS is ready to handle machine check events, it should call SAL_SET_VECTORS to
register the physical address, length and the GP of the OS_MCA handler. It is highly recommended
that a non-zero length be specified so that SAL can ensure the integrity of the OS_MCA code by
verifying its checksum. The OS must use the SAL_SET_VECTORS function if it expects to be

able to recover from any machine check conditions in which it may have to be involved, or in order
to retrieve error logging and state information and dumping such information for subsequent debug
analysis. After registering the OS_MCA address, the OS can re-enable machine checks by clearing
the PSR.mc bit to 0. The OS must call the SAL_GET_STATE_INFO_SIZE procedure to obtain the
maximum size of machine check state information that SAL would return for processor and
platform errors.

When the machine check event occurs, SAL_CHECK will invoke OS_MCA. OS_MCA
functionality is implementation-dependent. At a minimum, OS_MCA must call
SAL_GET_STATE_INFO to retrieve the error logging and state information. When it has finished
this task it must call SAL_CLEAR_STATE_INFO to release these resources for future logging and
state save. By calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its machine
check handling. OS_MCA can then re-enable machine checks by clearing the PSR.mc bit to 0.

OS may perform any corrections on the OS controlled hardware resources. The OS makes the
decision whether it wants to recover the interrupted context or not, but it must take into account the
state information retrieved from the SAL_GET_STATE_INFO call. This information contains
relevant data with respect to the continuability of the processor/system. Thus, even if the OS could
correct the error, if PAL reports that it did not capture the entire processor context, (e.g. Processor

IA-64 System Abstraction Layer Specification

4.4

state parameter states that the GRs are invalid), resumption of the interrupted context will not be
possible. The OS must aso determine from values in the Min-State Save area whether the machine
check occurred while operating with PSR.ic set to 0 and whether the processor implements the X1R,
XPSR and XFS registers necessary for the recovery.

When OS_MCA returnsto SAL or PAL, it is permitted to set new values for the registers that are
passed by PAL in the Min-State Save area. Thisis achieved by constructing a data structure with
the format identical to the Min-State Save area and returning the same to SAL or by passing the
same as an argument to the PAL_MC_RESUME procedure. Refer to the Intel® 1A-64 Architecture
Software Developer’s Manuédr the layout of this structure.

OS_MCA may select one of the following actions:

¢ Correct the error and return to SAL_CHECK with the status of “corrected.” This is the
recommended approach for errors corrected by the OS. The OS may set a new context in the
Min-State save area and SAL will then invoke PAL_MC_RESUME to return to the interrupted
or the new context. If the interrupted context was in the firmware address range and the OS
decides to set a new context, the OS must take steps for resumption of the firmware code
eventually, otherwise the system may become unstable.

Correct the error and invoke PAL_MC_RESUME to return to the interrupted or a new context.

Correct the error and jump to the interrupted context, or set a new context and jump to the new
context. In this case, OS_MCA should re-enable future machine checks by setting PSR.mc bit
to 0.

« In the event of an uncorrected error, return to SAL_CHECK with the uncorrected status value
and an indication for SAL to halt or reboot the system.

« In the event of an uncorrected error, reboot the system.

Figure 4-3shows the flow of control through SAL_CHECK on the monarch processor.

Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of ROM. SAL_CHECK may, however, invoke the
PAL procedures in memory after ensuring that the memory area containing the PAL procedures is
intact.

Following are typical PAL procedures that may be invoked by SAL_CHECK:
* PAL_MC_ERROR_INFO
* PAL_MC_RESUME
* PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:
- PAL_BUS_GET_FEATURES
* PAL_BUS_SET_FEATURES
- PAL_PROC_GET_FEATURES
* PAL_PROC_GET_FEATURES
- PAL_MC_REGISTER_MEM
* PAL_MC_EXPECTED

IA-64 System Abstraction Layer Specification 4-5

Figure 4-3. SAL_CHECK Detailed Flow

on the Monarch Processor

Yes

SAL_CHECK

to Rendezvous

Processors?

Send MC_rendezvous interrupt
if registered, else send INIT
to all other processors

Log processor & platform error info in
SAL implementation-dependent area

Y

Wait for all processors
to reach

Call PAL_MC_CLEAR_LOG to clear
processor error log resources

MC_rendezvous state

Send INIT
to failed
processors

Restore original
processor state to
SAL_CHECK entry

for INITed APs -
Wake up APs

Corrected
by OS

Set OS_INIT entry

Check

Expected
by SAL?

PAL
corrected?

Corrected
by SAL?

Yes

Fix the error

Yes

0S_MCA

valid?

l

|

process.

by OS No

A Al
Call PAL_MC_RESUME with
CMCl indicator set to restore
state & return to interrupted

(System Halt/Reboot

tor

Return to PAL
through GR19

Call PAL_MC_RESUME

state & return to interrupted
process.

estore

Resume execution

46

IA-64 System Abstraction Layer Specification

4.5

SAL may call the following procedure to ensure that all outstanding instructions within a processor
are completed or any potential machine checks due to these transactions get serviced.

« PAL_MC_DRAIN

Following are the SAL procedures that may be invoked by OS to register its machine check layer
interfaces:

* SAL_MC_SET_PARAMS

e SAL_SET_VECTORS

OS_MCA may invoke any of the PAL and SAL procedures. Following are typical SAL procedures
that may be invoked:

+ SAL_MC_RENDEZ
« SAL_GET_STATE_INFO

« SAL_GET_STATE_INFO_SIZE
« SAL_CLEAR_STATE_INFO

Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerations in MP
configurations. For example, if a recoverable cache error occurs that requires the flushing of
modified data to memory, the other processors unaffected by the machine check in the system
(non-monarch processors) must be rendezvoused prior to the flush in order to maintain error
containment in the system. RefeiSection 3.2.2.1, “Rendezvous Functionalifyt details of how

the rendezvous mechanism works.

If the PAL machine check layer determines that other processors must be rendezvoused for error
containment, it passes an indication to SAL_CHECK to perform the rendezvous and supplies a
return address within PAL in GR19. Upon return, PALE_CHECK performs the appropriate action
and then calls SAL_CHECK again in the normal manner (with no rendezvous indicator).

Additionally, there may be platform related machine check situations which require SAL firmware
to rendezvous processors. For example, if platform hardware were to stop forwarding transactions
in order to maintain error containment, the other processors in the system must be rendezvoused
before that platform hardware can resume forwarding transactions. Also, one can imagine a
platform cache situation similar to the one described above. Suffice it to say these conditions exist.

In order to facilitate these types of situations, the OS does the following:
* Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS
function.

¢ Invoke the SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL
firmware can signal the non-monarch processors and the mechanism that the OS will employ
to wake up the non-monarch processors at the end of machine check processing.

On receipt of the MC_rendezvous interrupt, the OS on the non-monarch processors will:
« Disable further interrupts and PMI.

e Call SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all
outstanding transactions within the processor and then enter a spin loop within SAL. This SAL
procedure shall be MP-safe.

IA-64 System Abstraction Layer Specification 4-7

Figure 4-4. Normal SAL Rendezvous Flow

(Reé“m) SAPIC
Machine 1 PAL <+ SAL |3 | MEINT 0S MC_INT
Check MCA - MCA Interrupt Handler
Timeout
4 10
Loop g
8
SAL_Rendezvous > Polling
A
|
I
0S_MCA 9 :
I
SAPIC WakeUp |
Monarch Processor 1 Interrupt ! SLAVE Processor
B ! I I Domain
Direct Flow ————Interrupt Signaling
000289

48

SAL on the monarch processor will wait a specified amount of time for the signalled processorsto
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to
alow the OS to take the appropriate error recovery actions.

In situations where either the OS has not registered an interrupt vector viathe

SAL_MC_SET _PARAMS call, or where the specified time to wait has elapsed and the signalled
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the
remaining processorsin order that the machine check handlersin PAL and SAL can proceed. While
sending an INIT to the other processors may not create an inherently unrecoverable situation, it
certainly increases the risk for recoverability. Thisisthe rationale for registering the
MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS procedure. The monarch
processor must alow sufficient time for the INIT 1Pl to be processed by the targeted processors and
reach the rendezvous state. If PAL requests rendezvous of al the processors and SAL is unableto
do so, SAL will return to PAL with anon-zero value in GR19. Refer to the Intel® IA-64
Architecture Software Developer's Mandal details regarding PALE_CHECK processing.

After the error is corrected by OS MCA, OS_MCA on the monarch processor will wake up the
rendezvoused processors using the wake up mechanism specified inthe SAL_MC_SET_PARAMS
call. For processors rendezvoused using the MC_rendezvous interrupt message, the continuation
point ismerely areturn from the SAL_MC_RENDEZ procedure. It isthe responsibility of the OS
to clear the IRR bits for the MC_rendezvous interrupt and the wake up interrupt, if any. The OS
must re-enable future interrupts, PMI and machine checks.

IA-64 System Abstraction Layer Specification

Figure 4-5. Failed SAL Rendezvous Flow

SAPIC INIT
CPUx Message
Failed | = 0S_INIT
Rendezvous 7 15
A
r———— [~~~ ——————— 1
| 14 :
1
(Return) | |
10 e | I
Machine 1 PAL) SAL : :
Check MCA 11 MCA | OS MC_INT I
: Interrupt Handler :
| 1
Timeout L e
Loop 5.9
> Polling

12

1
[
1
1
OS_MCA 13:
1
SAPIC WakeUp I
Monarch Processor : Interrupt 1 SLAVE Processor
pomain [Domain
Direct Flow

————Interrupt Signaling
000290

If some non-monarch processors were rendezvoused using an INIT | Pl message, their continuation
point on wake up would be the OS_INIT procedure registered for the monarch by the
SAL_SET_VECTORS(INIT) call. OS must register this entrypoint prior to the wake up, else SAL
will reset the system. Refer to the Section 5.3, “OS_INIT Handoff Statédr the parameters on
entry to the OS_INIT procedure.

It should be noted that some implementations, under certain machine check circumstances, will
cause multiple processors to enter PALE_CHECK and SAL_CHECK. PAL code will be generally
unaware of this, but SAL code should make every effort to take such situations into account. SAL
code must implement methods of detecting which processors have entered the SAL_CHECK
entrypoint and avoid steps to rendezvous such processors (using MC_rendezvous interrupt or
INIT). Some examples of situations when multiple processors experiencing machine checks
simultaneously are as follows:

¢ Broadcast machine check (BERR signal) from the platform

« Error during a cast out of a cache line in response to an incoming snoop cycle from another
processor

When multiple processors experience machine checks simultaneously, SAL selects a “monarch”
machine check processor to accumulate all the error logs at the platform level. Once this is done,
OS_MCA procedure will be invoked on all the processors that experienced the machine checks in a
serial fashion. The OS_MCA layer may need to implement a similar “monarch” processor selection
for the error recovery phase.

IA-64 System Abstraction Layer Specification 4-9

4.6

4.6.1

OS_MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the OS machine check
handler, OS_MCA. The contents of non-banked and bank zero general registers at the time of the
interruption have been saved by PAL in the Min-State Save area and these are available for use by
SAL and OS_MCA. Thefollowing register contents define the OS_MCA handoff state.

The state of the processor isthe same as on exiting PALE_CHECK (refer to the Intel® 1A-64
Architecture Software Developer's Manuekcept as below:

GR1= OS_MCA Global Pointer (GP) registered by OS (OS’s GP)
GRs2-7 = Unspecified
GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint
GR10 = GP (Physical address value) for SAL
GR11 = Rendezvous state information
0 = Rendezvous of other processors was not required by PAL_CHECK and hence
was not done
1 = All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt
2 = All other processors in the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT
—1 =Rendezvous of other processors was required by PAL but was unsuccessful
GR12 = Return address to a location within the SAL_CHECK procedure
GRs13-31 = Refer to thatel® 1A-64 Architecture Software Developer’s Manual
BRO = Unspecified

Note: Onentry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration.
he OS must not make cacheable accesses to the MinState area, el se machine checks might
occuras aresult of a cache hit to an uncacheable page

Return from OS_MCA Procedure

The OS_MCA procedure may or may not return to SAL_CHECK in the case of uncorrected
machine checks. If OS_MCA procedure does return to SAL, it must set appropriate valuesin the
Min-State Save area pointed to by GR22, for continuing execution at the interrupted or a new
context. The OS must restore the processor state to the same as on entry to OS_MCA except as
follows:

GRsl-7=Unspecified
GR8= 0if error has been corrected by OS_MCA
-1 if error was not corrected by OS_MCA and SAL must warm boot the system
-2 if error was not corrected by OS_MCA and SAL must cold boot the system
=3 if error was not corrected by OS_MCA and SAL must halt the system
GR9 = GP (Physical address value) for SAL
GR10 = 0 if return will be to the same context
1 if return will be to a new context
GRs11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values

IA-64 System Abstraction Layer Specification

in the Min-State Save area.
GRs23-31 = Unspecified
PSR = Sameason entry from SAL_CHECK except that PSR.mc may be either O or 1
BRO = Unspecified

IA-64 System Abstraction Layer Specification

4-11

4-12

IA-64 System Abstraction Layer Specification

intel.

Initialization Event 5

5.1

INIT isaninitialization event generated by the platform or by software through a SAPIC message.
The INIT event causes the processor to execute the processor-dependent INIT handler
(PALE_INIT), inthe |A-64 ISA. The PALE_INIT saves minimum register state and branches to
SALE _ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT). The state of
the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the Intel® 1A-64
Architecture Software Developer’'s Manual.

SAL_INIT

SAL_INIT is entered from PALE_INIT via SALE_ENTRY. SAL_INIT’s purpose is to save the

state of the processor to the platform-specific Processor State Information (PSI) area and either
invoke an OS INIT handler (OS_INIT) if the same has been registered through a
SAL_SET_VECTORS call, or warm boot the system otherwise. The SAL_SET_VECTORS
procedure permits the OS to register separate entrypoints for the first processor (monarch) to enter
the SAL_INIT layer and subsequent processors (non-monarchs).

INIT is also used during machine check handling in MP environments to transition the
non-monarch processors to the rendezvous state. SAL code must recognize this condition using its
internal variables and call SAL_MC_RENDEZ procedure. It must not invoke the OS INIT handler
for this situation.

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will
cause a system-wide warm boot. Note that during the transition from PALE_RESET to
SAL_RESET via SALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

* During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code
where it may deposit some minimal processor state information so that PAL code has sufficient
resources to perform the necessary machine check or INIT processing. This step is performed
on all the processors on the system.

SAL_INIT savesthe minimal processor state information aswell as some additional processor
and platform state information in the SAL data area and provides the sameto OS_INIT.
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

If the INIT was intended to transition APs to rendezvous state during a MP platform machine
check, SAL_MC_RENDEZ procedure needs to be invoked. Refgedtion 4.5, “Machine
Checks in MP Configurationgbr details.

If INIT is not due to a MP platform machine check rendezvous, check if OS_INIT handlers for
the monarch and non-monarch processors are registered and that both of them are valid. When
the OS_INIT procedures and their lengths were registered with SAL, SAL would have
computed and saved the checksums of such code. On receipt of INIT, SAL verifies the
checksum of the code at the OS_INIT procedure addresses before jumping to the same.

IA-64 System Abstraction Layer Specification 5-1

5.2

5-2

intel.

« If the code for the OS_INIT handlers are intact, call the OS_INIT handlers for the monarch and
non-monarch processors.

« If the OS_INIT handler is not registered, set implementation-dependent SAL warm boot
indicator and reboot the system either by calling SAL_RESET or by generating a reset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT
processor state is logged at least. There is neither a requirement nor a way to clear a pending INIT
condition.

On some PC-AT platforms, the platform provides a switch that can generate an NMI signal and this
is used by IA-32 OSes to effect a crash dump on a hung system. On IA-64 systems, a similar
function will be performed by an INIT switch as the NMI signal is masked by the PSR.i bit of the
processor. If SAL_INIT gains control due to the platform’s INIT switch while an IA-32 OS is
executing, the SAL_INIT layer shall send an SAPIC IPI message to the same processor with the
interrupt type of NMI and then return to the interrupted context using the PAL_MC_RESUME
procedure.

Figure 5-1shows a possible flow of control through SAL_INIT.

OS_INIT

OS_INIT is an entrypoint into the OS to deal with the initialization event. The exact definition of
OS_INIT functionality is OS-dependent. SAL_SET_VECTORS is called by the OS prior to the
initialization event to register the physical addresses and the GP of the OS INIT handlers for the
monarch and non-monarch processors. If an OS intends to make the monarch selection in the OS
layer, it could register the same OS_INIT entrypoint for both the monarch and non-monarch
processors. From the SAL's perspective, there are no functionality differences between the two
OS_INIT entrypoints and the hand off state from the SAL to the OS_INIT layer are similar.

When the OS_INIT layer is called by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO
to get processor/platform state. When it has finished this task, it must call
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. By
calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its INIT processing.
OS_INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0.

The OS_INIT handler may return to SAL with an indication to effect a warm reset or a return to the
interrupted context. OS_INIT may alternatively invoke PAL_MC_RESUME to return to the
interrupted context. OS_INIT may set new values for registers that are saved by PAL in the
Min-State Save area. This is achieved by constructing a data structure with the format identical to
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME
procedure. Refer to tHatel® 1A-64 Architecture Software Developer’s Mantelthe layout of

this structure.

IA-64 System Abstraction Layer Specification

intel.

Figure 5-1. SAL_INIT Control Flow

INIT Event ——p»{ PAL_INIT

Write processor/
platform info to save
area

NIT due to
failure to respond
to rendezvous

interrupt?

Wake up

SAL_MC_RENDEZ

Interrupt — — —

OS_INIT
procedures
valid?

Warm Boot

SAL implementation-
specific warm boot
(SAL_RESET or reset
event)

CrashDump
Switch
& 1A-32 0S?

OS_INIT

IA-32 OS
Y
Return value
from OS

Return to

Interrupted

Context

l

Inject NMI IPI into

PAL_MC_RESUME

000938

IA-64 System Abstraction Layer Specification

5.3 OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the OS code, OS_INIT. The
contents of non-banked and bank zero general registers at the time of the interruption have been
saved by PAL inthe Min-State Save area and these are available for use by SAL and OS_INIT. The
following register contents define the OS_INIT handoff state.

The state of the processor isthe same as on exiting PALE_INIT (refer to the Intel® 1A-64
Architecture Software Developer's Manuekcept as below:

GR1= Physical address of the OS_INIT Global Pointer (GP) registered by OS (OS’s gp)
GRs2-7 = Unspecified
GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint
GR10 = GP value (Physical address) for SAL

GR11 = INIT reason code:
0 = Received INIT signal on this processor for events other than CrashDump

switch assertion
1 = Received wake up signal on this processor at the end of an OS_MCA corrected

machine check
2 = Received INIT signal on this processor due to CrashDump switch assertion
GR12 = Return address to a location within the SAL_INIT procedure
GRs13-31 = Refer to thatel® 1A-64 Architecture Software Developer’s Manual
BRO = Unspecified
Note: Onentry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The
OS must not make cacheable accesses to the MinState area, €l se machine checks might
occur as aresult of acache hit to an uncacheabl e page.

System state Resources are:
e TLB —TCs and TRs are unchanged.
» Caches — Enabled, coherent and consistent in the absence of hardware failures.
* Memory — Unchanged, except for the updated Processor State Information (PSI) area.

54 Return from OS_INIT Procedure

If OS_INIT procedure returns to SAL, it must set appropriate values in the Min-State Save area
pointed to by GR22, for continuing execution at the interrupted or a new context. The OS must
restore the processor state to the same as on entry to OS_INIT except as follows:

GR1= 0if SAL must warm boot the system
= 1if SAL must return to interrupted context using PAL_MC_RESUME
GR2-9= Unspecified
GR10= GP (Physical address value) for SAL
GRs11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registersin the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_INIT must supply this parameter even if it does not change the register values
in the Min-State Save area
GRs23-31= Unspecified

5-4 IA-64 System Abstraction Layer Specification

BRO = Unspecified
PSR = Sameason entry from SAL_INIT except that PSR.mc may be either O or 1

If OS_INIT requests SAL to reboot the system, it is SAL's responsibility to rendezvous all the
processors on the system and then select a BSP for further system initialization. If rebooting is
required while running an 1A-32 OS, SAL will use the currently selected BSP for performing the
rendezvous of the other processors.

5.5 MP INIT Support

There are a few situations when processors enter SAL_INIT in MP configurations which deserve
specific mention.

« If a processor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch
and non-monarch processors or their checksums are incorrect, then the processor will reset the
system (warm boot). In the MP environment, the processor performing the reset shall reset the
system, not just itself.

« If a processor enters SAL_INIT as the result of a platform machine check rendezvous event,
then the SAL_INIT must invoke the SAL_MC_RENDEZ procedure. Normally, the OS would
have registered an interrupt using the SAL_MC_SET_PARAMS procedure to register the
external interrupt vector to be used to interrupt the OS on the processors unaffected by the
machine check. On receipt of such an interrupt, the OS would invoke the SAL_MC_RENDEZ
procedure. If for some reason any of the processors do not respond to this interrupt, or if the
OS fails to register such an interrupt vector, then the processor handling the machine check
will INIT such processors and they will enter SAL_INIT for the platform machine check
rendezvous event. Since all the processors reach SAL_MC_RENDEZ, the effect is the same
(almost) as if the processor had responded to the interrupt. The difference is that processors
entering SAL_MC_RENDEZ through SAL_INIT will be less likely to be recoverable.

At the end of machine check processing, OS_MCA procedure on the monarch processor will
wake up al the other processors using the wake up mechanism specified by the
SAL_MC_SET_PARAMS procedure. The processors that received the INIT would jump to
theregistered OS_INIT procedure for the monarch processor. The OS_INIT procedure may
analyze the reason why the processor needed the INIT (or reasons for not responding to the
MC_rendezvous interrupt). If INIT occurred when PSR.ic bit was 1, there is no loss of
machine state. OS_INIT can return to SAL specifying resumption of theinterrupted context by
invoking PAL_MC_RESUME.

IA-64 System Abstraction Layer Specification 5-5

IA-64 System Abstraction Layer Specification

intel.

Platform Management Interruptions 6

6.1

6.2

Platform Management Interruptions (PMIs) provide an OS-independent interrupt mechanism to
support OEM and vendor-specific hardware events.

SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state
in interruption resources and then callsthe SALE_PMI handler. SALE_PMI shall return to the
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain
processor-specific events may also cause PMI interrupts. These are handled entirely within the
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® 1A-64 Architecture
Software Developer’s Manuédr details regarding PALE_PMI processing.

PMI isthe highest priority external interrupt and it ranks after Reset, Machine Check and INIT in
terms of priority. PMI is masked by setting the PSR.ic bit to O (interrupt collection disabled). The
PSR.i bit (interrupt enable) has no effect on masking of PMI events.

Unlike the System Management Interrupt (SMI) on 1A32 systems, the OS can mask PMIs by
setting PSR.ic bit to O (interrupt collection disabled). Also, PMI interrupt processing causes
execution of PALE_PMI code before entering the SALE_PMI code. To minimize latency in
entering code inthe SALE_PMI layer, the OS must avoid operating with PSR.ic bit set to 0 for long
durations. Otherwise, some softwarein the SALE_PMI layer may fail. Note that some real time
applications may have more stringent timing restrictions as regards operating with interrupt
collection disabled.

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It
also causes special problems if multiple SAPIC messages of PMI delivery type are targeted to the
same destination processor (see Section 6.4 below).

One method of software entry into the PMI environment isto send a SAPIC message to the same
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for
SAL.

SALE_PMI Initialization

During power up, SAL copiesthe SALE_PMI handler to memory and then invokes the PAL
procedure PAL_PMI_ENTRYPOINT to set the programmable entrypoint of the SALE_PMI
procedure. In a MP-environment, this step must be performed on al the processors. The
SALE_PMI entrypoint can be different for various processors in an MP configuration.

IA-64 System Abstraction Layer Specification 6-1

6.3

6.4

6-2

SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from
SALE _PMI to PALE_PMI are fully documented in the Intel® |1A-64 Architecture Software
Developer's Manual

SALE_PMI isentered in physical mode with PSR.i and PSR.ic bits set to O (interrupt and interrupt
collection bitsdisabled). SALE_PMI isentered in the | A-64 1 SA regardless of the current processor
state. The processing steps for various PMI events within the SAL layer are platform and SAL
implementation-dependent. At the end of processing the PMI, SALE_PMI returnsto PALE_PMI
using branch register BO. Thereis neither arequirement nor away to clear apending PMI interrupt.

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor
simultaneously. In this situation, only one PMI interrupt will be recognized. Thisis analogousto
sending edge triggered external interrupts using the same interrupt vector. To guard against |oss of
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for
the PMI using memory data structures.

Special Considerations for Multiprocessor
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with
delivery type of PMI. In aMP-configuration, there could be conflicts between PMI| and machine
check. One of the processors could bein SAL_CHECK, trying to bring other processorsto
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If thelatter werein SALE_PMI,
the MC_rendezvous externd interrupt would not be recognized immediately and this might
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since
recoverability from INIT is minimized when PSR.ic is O, it is recommended that SALE_PMI
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.

IA-64 System Abstraction Layer Specification

intel.

IA-32 Support /

7.1

7.2

7.2.1

IA-32 Support Model

This chapter describes the | A-32 support within SAL during the booting process. Additionally, it
provides some guidelines on the choice of 1A-32 instructionsto SAL developerswho plan to re-use
existing 1A-32 BIOS code.

For details on | A-32 instruction execution on 1A-64 processors, refer to Volume 1, Chapter 6 and
Volume 2, Chapter 10 of the Intel® IA-64 Architecture Software Developer's Manual

1A-32 support code in SAL cannot be used after an OS (1A-32 or |A-64) has taken control of the
trandation resources. Most | A-64 OSes will provide their own | A-32 support code and not use the
codein SAL. If the user boots an |A-32 OS, SAL would have invoked the

PAL_ENTER_IA_32 ENV procedure which activatesthe PAL layer in support of 1A-32 OSes and
this PAL firmware layer configures the processor to behave like a Penti um® 111 processor, obviating
the need for SAL's 1A-32 support code. For more details, refer to Volume 4, Chapter 8raélRe
1A-64 Architecture Software Developer’s Manual

During the platform initialization phase of the boot sequence, the IVA may pointtoa32 KB IVT in
ROM. Some of the trap handlersin the IVT could support execution of 1A-32 code. Thus, it is
possible to execute | A-32 code early in the boot sequence, if needed. Refer to Chapter 3, for
fault/trap handler support requirementsin SAL.

IA-32 Support Requirements

1A-64 platforms may contain one or more | A-32 adapter cards containing 1A-32 Option ROMs. If
the adapter cards support boot devices, they will need to beinitialized in the process of booting the
OS. The 1A-32 support code in SAL will be exercised while executing the 1A-32 code. Also, since
SAL contains | A-32 support code for execution of the | A-32 Option cards, a portion of the |A-64
SAL layer may itself be coded in |A-32 I1SA (i.e. the traditional |A-32 System ROM BIOS may be
reused).

Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility:
¢ PC-AT Memory map:

« Interrupt vector area 0 — Ox3FF: Contains entrypoints for software interrupts in
offset:segment format.

* BIOS RAM data area 0x400 — Ox4FF: Data variables stored by System BIOS and Option

ROMs.
¢ Option ROM space: 0x000C_0000 — 0x000D_FFFF.

IA-64 System Abstraction Layer Specification 7-1

intel.

» PC-AT compatibility entrypoints: Addresses in the 0x000F_E000 to 0xO00F_FFFF range
pointing to entrypoints and tables.

It is expected that SAL code would be designed to use identical virtual-to-physical memory mappings and
not conflict with the |A-32 BIOS memory usage.

* PC-AT I/O map: Motherboard I/O ports are in the range of 00 to OxFF and other IA-32 devices
occupy the rest of the 64K 1/0O space. The most important ports used by BIOS code are
Interrupt controller (0x20, 0x21, 0xAO, 0xAl), Interval timer (0x40 to 0x43) and CMOS RAM
(0x70, 0x71).

7.2.2 Overview of IA-32 Support Layer Functionality

IA-32 support layer is mainly required for the following areas:

* Memory mapped I/O: The processor needs to provide the uncacheable semantics for memory
mapped I/O to devices such as VGA buffer. Also, the search for memory mapped devices need
to be performed without caching artifacts. Caches within the processor are enabled by
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the
uncacheable memory attribute required for I/0O completion is specified by setting bit 63 of the
memory address, in physical addressing mode. Bit 63 of the physical address has no effect
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call.

Since it is not possible to generate an address with bit 63 set while operating in the 32-bit
IA-32 1SA mode, | A-32 code needs to be executed with translations enabled and TLBs need to
specify the uncacheable memory attribute. TLBs provide the same functionality as M TRRs on
a Pentium Pro processor.

Handle traps during IA-32 code execution.

Virtualizing PC-AT peripherals: If some legacy devices are not present on the platform, SAL
may provide the necessary virtualization during IA-32 code execution by setting up TLBs to
trap the accesses.

7.2.3 IA-32 Instruction Usage Guidelines

7-2

IA-32 System BIOS code executimgthin the SAL environment must follow these guidelines in its
usage of IA-32 instructions, in order to limit SAL's 1A-32 support requirements. These restrictions
do not affect operation of existing IA-&ption ROMs which are restricted to operating in 1A-32

real mode. Option ROM code on PC-AT compatible platforms are already compliant with the
following guidelines:

* |1A-32 code shall not use protected mode instructions of the IA-32 ISA. Only real mode and big
real mode opcodes are permitted. The transitions between real mode and big real mode will
occur using the IA-64 SAL code that sets up the appropriate IA-32 segment descriptors, and
not by use of the IA-32 LGDT instruction. The traditional IA-32 BIOS functions requiring
protected mode usage, such as search for PCI Option ROMs near 4 GB address, can be done
easily using the big real mode or in the 1A-64 ISA. SAL will provide support the Extended
Memory Move function (IA-32 INT 0x15, subfunction 0x87) for moving data to and from
addresses above 1MB.

* |A-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC.

* 1A-32 code shall not use code involving 1A-32 privileged instructions such as LGDT, RDMSR,
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent 1A-64 code. Refer

IA-64 System Abstraction Layer Specification

to the Intel® 1A-64 Architecture Software Developer's Mantala complete list of
instructionsthat cause the | A-32 Instruction Intercepts. SAL shall provide necessary emulation
support for the following instructions:

o CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS, WBINVD

IA-32 code shall not use code involving IA-32 Call Gates.

1A-32 stack must be aligned on an even byte boundary. The 1A-32 support layer in SAL will
need to retrieve or store values into the IA-32 stack in order to emulate instructions such as
INT, IRET. If the 1A-32 stack is aligned on an odd byte boundary, an unaligned data reference
fault will result and SAL does not provide a handler for this exception.

The above restrictions are not applicable when the OS kernel takes over. Thus, an 1A-32 or 1A-64
OS may set up the environment for 1A-32 protected mode and invoke protected mode functions of
IA-32 BIOS.

7.2.4 IA-32 Support Environment

This section describes the execution environment for IA-32 code.

1.

IA-32 BIOS code will be executed with Instruction translation on, Data translation on and
RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to
mask exceptions caused by unaligned memory references during execution of I1A-32 code.

The following traps will be supported in the Interrupt Vector Table (IVT) for supporting
IA-32 execution:

* |A-32_Exception vector
* 1A-32_Intercept vector
* 1A-32_ Interrupt vector
« External interrupt vector

SAL will set up CFLG register which maps to the IA-32 system registers CR0O and CR4.
When SAL procedures are called by the OS Loader, SAL will set up the appropriate value in
the CFLG register, if transition to I1A-32 ISA mode is required.

The CFLG.io bit will be set to 0 to eliminate the need for Task State Segment (TSS) while
executing 1A-32 code. 1A-32 EFLAG.iopl field should be set to 3 to permit IA-32 1/O
instructions without causing any traps. IOBASE register and translation mechanisms within
the processor will be set up to automatically convert the 1A-32 I/O accesses to the 1A-64
memory load or store operations with the uncacheable memory attribute. If some legacy
devices are not present on the platform, TLBs may be set up to trap the accesses and SAL
can either redirect the 1/0 to a different hardware on the platform or provide suitable
software emulation.

The PSR.i bit may be set to 1 to enable interrupts in the 1A-64 system environment and the
CFLG.if bit may be set to 1 to allow IA-32 code to control interrupt masking. With these
settings, the 1A-32 EFLAG.if bit will enable or disable external interrupts while executing
IA-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the IA-64
instruction set.

The CFLG.ii bit may be set to 0 if there is no need to intercept changes to interrupt enable
flag.

IA-64 System Abstraction Layer Specification 7-3

7.2.5

7-4

IA-32 Interruption Handler Support

External interrupts, |A-32 defined exceptions and software interrupts are delivered to the |A-64

software interruption handlers. All interruption handlers may run with PSR.dt, PSR.rt turned off to

avoid the Nested TLB fault that can occur while accessing the fault handler’s local variables and
data structures. SAL will populate the following handlers in the IVT to handle interruption in its
environment:

* |A-32_Exception vector: This handler will handle exceptions caused by IA-32 instructions
such as Divide by zero fault. These interruptions should not occur while executing debugged
IA-32 BIOS code. The exception should be reflected to IA-32 code using the 1A-32 real mode
Interrupt Descriptor Table (IDT) at locations 0 to Ox3FF. Typically, IA-32 code in the IDT will
display an error message when such exceptions are encountered.

* I1A-32_Intercept vector: This handler will handle several categories of intercepted instructions
as described in thatel® |1A-64 Architecture Software Developer's Manual

* Instruction Intercept: Refer ®ection 7.2.3or a list of the |1A-32 instructions that must be
emulated by SAL.

» Lock Intercept: This interruption handler will be invoked for CMPXCHG, LOCK,
XADD, XCHG instructions. This intercept can be avoided by enabling the lock feature in
the 1A-64 Default Control Register (DCR.Ic = 0), if the platform can support locked read
modified writes. If the platform does not support the bus lock signal,
PAL_BUS_SET_FEATURES may be invoked to execute the locked transactions as a
series of nhon-atomic transactions. This, in effect, will mask the lock intercept. Refer to the
Intel® 1A-64 Architecture Software Developer’s Mantml details.

» Gate intercept: Support is not needed for trapping privilege transitions using gates. I1A-32
System BIOS code shall avoid this intercept and Option ROM code is not permitted to use
privilege transitions using gates.

* IA-32 System Flag intercept: This intercept can be avoided for the STI, CLI, POPF and
POPFD instructions by setting CFLG.if bit to 1, which allows the 1A-32 code to control
interrupt masking with the 1A-32 EFLAG.if bit. To support the MOV SS and the POP SS
instructions, SAL shall disable interrupts and execute the next IA-32 instruction with the
PSR.ss set to 1. This will generate an 1A-32_Exception(Debug). The handler for this
exception will restore the previous value of PSR.i and return to the IA-32 code.

* |A-32_Interrupt vector: This handler supports the I1A-32 INT instruction. SAL will provide the
necessary emulation support for the Extended Memory Move function (INT 0x15, subfunction
0x87) in order that real mode code may move data to and from addresses over 1MB without
requiring a transition to the 1A-64 instruction set. The rest of the INT instructions will be
emulated by jumping to the address pointed to by the 1A-32 real mode Edllowing is an
example of pseudo code:

1. Get the Software interrupt number nn from | SR vector.

2. Use nn as an index into the IA-32 real node Interrupt
Descriptor Table at |ocati on 0000h and obtain the
segnent : of fset of |1 A-32 code to be invoked.

3. Store the two byte FLAGS on | A-32 stack.

4. Store the segnent:of fset address of the | A-32 instruction
follow ng the INT nn on | A-32 stack.

5. Store the | A-32 segnent: of fset addresses in the appropriate
| A-64 registers corresponding to IP, CS selector, CS

IA-64 System Abstraction Layer Specification

segnent descriptor and transition to | A-32 code using RF/
i nstruction.

6. The I A-32 code will terminate by issuing an | RET or a RET 2
instruction and this will return to the 1A-32 instruction
follow ng the INT nn.

« External interrupt vector: Hardware interrupts will be received by SAL in the 1A-64 ISA which
will obtain the interrupt vector corresponding to the interrupting source. For more details, refer
to Section 3.3.1If the interrupts need to be reflected to I1A-32 code, the address will be derived
from the 1A-32 Interrupt Descriptor Table.

IA-64 System Abstraction Layer Specification 7-5

IA-64 System Abstraction Layer Specification

intel.

Calling Conventions

8.1 SAL Calling Conventions

Thefollowing general rules govern the definition of the SAL procedure calling conventions:

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

Table 8-1. Definition of Terms

Term Description

entry Start of the first instruction of the SAL procedure.

exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also
C, it must be the same as the value at entry.

unchanged | The SAL procedure must not change these values from their entry values during
execution of the procedure.

scratch There are no requirements on the state of these values during execution of the
procedure. The SAL procedure may modify them as necessary during execution of
the procedure.

preserved The SAL procedure may modify these values as necessary during execution of the
procedure. However, they must be restored to their entry values prior to exit from
the procedure.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit
from a SAL procedure call. The OS Loader must follow the state requirements for PSR shown
below. SAL callsthat invoke PAL procedures may impose additional requirements.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class
be Big-endian memory access enable 0 0 preserved
up User performance monitor enable C C unchanged
ac Alignment check C C preserved
mfl Floating-point registers f2-f15 written C C preserved

IA-64 System Abstraction Layer Specification 8-1

Table 8-2. State Requirements for PSR (Continued)

intel.

PSR Bit Description Entry Exit Class
mfh Floating-point registers f16-f127 written C C preserved
ic Interruption state collection enable C C preserved®

0 0 unchanged
i Interrupt unmask C C preservedb
pk Protection key validation enable C C unchanged
dt Data address translation enable C C preserved®
dfl Disabled FP register f2 to f15 C C unchanged
dfh Disabled FP register f16 to f127 C C unchanged
sp Secure performance monitors C C unchanged
pp Privileged performance monitor enable C C unchanged
di Disable ISA transition C C preserved
si Secure interval timer C C unchanged
db Debug breakpoint fault enable C C unchanged
Ip Lower-privilege transfer trap enable C C unchanged
tb Taken branch trap enable C C unchanged
rt Register stack translation enable C C preserved®
cpl Current privilege level 0 0 unchanged
is Instruction set 0 0 preserved
mc Machine check abort mask C C preserved®

1 1 unchanged
it Instruction address translation enable C C unchanged
id Instruction debug fault disable C C unchanged
da Disable Data access/dirty-bit faults 0 0 unchanged
dd Data debug fault disable 0 0 unchanged
Ss Single step trap enable 0 0 unchanged
ri Restart instruction 0 0 preserved
ed Exception deferral 0 0 preserved
bn Register bank 1 1 preserved
ia Disable instruction access-bit faults 0 0 unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as

unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the
value on exit shall be 1 and must be classified as unchanged.

IA-64 System Abstraction Layer Specification

intel.

8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class
DCR Default Control Register unchanged
IT™ Interval Timer Match Register unchanged
IVA Interruption Vector Address unchanged
PTA Page Table Address unchanged
GPTA Reserved IA-32 Resource unchanged
IPSR Interruption Processor Status Register scratch
ISR Interruption Status Register unchanged?®
P Interruption Instruction Bundle Pointer unchanged?®
IFA Interruption Faulting Address unchanged?
ITIR Interruption TLB Insertion Register unchanged?®
IIPA Interruption Instruction Previous Address unchanged?
IFS Interruption Function State unchanged?®
IIM Interruption Immediate Register unchanged?
IHA Interruption Hash Address unchanged?®
LID Local Interrupt ID unchanged
IVR Interrupt Vector Register (read only) unchanged
TPR Task Priority Register unchanged
EOI End Of Interrupt unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) unchanged?®
TV Interval Timer Vector unchanged
PMV Performance Monitoring Vector unchanged
CMCV Corrected Machine Check Vector unchanged
LRRO-LRR1 Local Redirection Registers 0-1 unchanged
RR Region Registers preserved
PKR Protection Key Registers unchanged
TR Translation Registers unchangedb
TC Translation Cache scratch
IBR/DBR Break Point Registers preserved
PMC Performance Monitor Control Registers preserved
PMD Performance Monitor Data Registers unchanged®

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may
cause them to change.
b. If an implementation provides a means to read TRs through a PAL procedure call, this should be

preserved.

c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting
performance monitor events during a procedure call.

IA-64 System Abstraction Layer Specification

8.1.4

General Registers

SAL will use the standard calling convention as described in the 1A-64 Software Conventions and
Runtime Architecture Guide. Routines written using this convention may be written either in
assembly or C or other high level languages.

Table 8-4. General Registers —Standard Calling Conventions

8.1.5

8.1.6

8-4

Register Conventions
GRO Always 0
GR1 Special; global data pointer (gp)
GR2 - GR3 Scratch; used with 22 bit immediate add
GR4 - GR7 Preserved
GR8 - GR11 Scratch, procedure return value
GR12 Special, stack pointer. preserved
GR13 Special, thread pointer. preserved
GR14 - GR31 Scratch
Bank 0 Registers Preserved
(GR16 — GR23)
Bank 0 Registers Scratch
(GR 24 — GR31)
GR32 - GR127 Stacked registers;

in0 -in95: input arguments (SAL index must be in0)
locO — loc95: local variables
out0 — out95: output arguments

The GP for the SAL code should be known to system software as SAL passes it as one of the boot
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum
16 KB bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB
bytes of RSE backing store must be available for SAL.

Floating-point Registers

Although thereisno SAL procedure that passes floating-point parameters, the floating-point
register conventions are the similar to those specified by the 1 A-64 Software Conventions and
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus
eliminating the need for the OS to save these registers across SAL procedure calls. All the pending
floating-point exceptions must be handled before calling SAL if the execution environment for
calling SAL cannot handle any floating-point exceptions.

Predicate Registers

The conventions for these registers follow the | A-64 Software Conventions and Runtime
Architecture Guide.

IA-64 System Abstraction Layer Specification

8.1.7

8.1.8

8.1.9

8.2

Branch Registers

The conventions for these registers follows the | A-64 Software Conventions and Runtime
Architecture Guide.

Application Special Registers

The application registers follow the | A-64 Software Conventions and Runtime Architecture Guide.

Parameter Buffers

The parameter buffersto SAL_PROC must be aligned to the greater of its data type size or 8-byte
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of
the parameter buffers depends on the execution environment of the caller. The following
conventions are followed for the parameter buffers:

« Until the OS takes over the IVT and translation faults, parameter buffers passed to SAL are
identity mapped virtual addresses and are accessible by the region register 0 (RRO). In this
environment, SAL can handle the access faults while accessing parameter buffers if the buffers
are identity mapped.

« Parameter buffers passed to SAL runtime services can be either physical or virtual. If the
parameter buffers are virtual, the OS runtime execution environment must provide the proper
mapping for the parameter buffers.

Software Interface Conventions for SAL Procedures

A generic |1A-64 interface is provided between IA-64 OS and SAL. IA-64 OS always follows the
standard calling convention to call SAL functions. The parameters passed to the SAL interface are
defined as follows:

SAL_PROCérg0, argl, ..., arg?)
Where, input parameters (maximum of eight 64-bit values) are:

arg0 —functiona identifier. Currently the upper 32 bits are ignored and only the lower 32 bits
are used. The following functional identifiers are defined:

OX01XXXXXX — Architected SAL functional group

OX02XXXXXX to OXO3XXXXXX — OEM SAL functional group. Each OEM is allowed to
use the entire range in the 0X02XXXXXX range. The 0x03XXXXXX range is reserved
exclusively for Firmware vendors.

0X04XXXXXX to OXFFFFFFFF — Reserved
argl —thefirst parameter of the architected/OEM specific SAL functions.
arg2 to arg7 —additional parametersfor architected/ OEM specific SAL functions.
and return parameters (maximum of four 64-bit values) are:
retO — return status: positive number indicates successful, negative number indicates failure.
retl to ret3 — other return parameters.

IA-64 System Abstraction Layer Specification 8-5

8.2.1

Control Flow of the SAL Interface

OS/Loader follows the standard calling convention to call both architected and OEM specific SAL
functions. OS/L oader sets up the appropriate parametersin | A-64 general registers according to the
calling convention and calls SAL_PROC. The first parameter passed to SAL_PROC specifies the
functional identifier and based on the functional identifier, SAL dispatches the function to the
appropriate functional block. Figure 8-1 shows the control flow of the SAL interface.

Figure 8-1. Control Flow of the SAL Procedure Interface

8.2.2

8.2.2.1

8-6

C OS/Loader)

|

SAL defined 1A-64 interfaces:
Setup parameters in I1A-64
registers (arg0...arg7)
according to standard calling
convention:

arg0 — Function ID,

arglto arg7 — parameters.

l
/\

Architected SAL Functions | | OEM SAL Functions

Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the OS/L oader sets up argO to the appropriate
architected SAL or OEM specific SAL functional identifier. It then sets up other parametersin argl
to arg7 as specified by the SAL functional description and calls SAL_PROC. SAL_PROC
dispatches this function to either the architected SAL function handler or the OEM specific SAL
function handler based on the functional identifier. The SAL function returns the statusin retO and
the additional return parametersin retl to ret3.

SAL Return Status Value

SAL procedures return a 64-bit status value in ther et 0 parameter. Positive numbersindicate
success and negative numbers indicate failure. The following table summarizes the error code.

IA-64 System Abstraction Layer Specification

intel.

Table 8-5. SAL Return Status

Register

Conventions

0

Call completed without error

1

Call completed without error but some information was lost due to overflow

2

Call completed without error; effect a warm boot of the system to complete the
update

-1

Not implemented

-2

Invalid Argument

-3

Call completed with error due to hardware malfunction or firmware error

4

Virtual address not registered

-5

No information available

-9

Scratch buffer required

IA-64 System Abstraction Layer Specification 8-7

IA-64 System Abstraction Layer Specification

intel.

SAL Procedures 9

9.1

9.1.1

SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the OSwhen it is
executing. These services provide a platform-independent interface for hardware components.
runtime services contain procedures called by the OS to access platform hardware features on
behalf of the OS. runtime services should take no more time to perform an action than it would take
the OS to perform the same action.

The entire SAL runtime services code must be located in one contiguous memory area. Similarly,
the SAL runtime services data area must be located in one contiguous memory area.

SAL runtime services are called from the following execution environment:
» OS runtime execution environment. The normal OS execution environment is with translation
on and interrupts enabled but OS may choose to call SAL runtime services in physical mode.
¢ OS Machine Check and INIT handler. The execution environment for these are provided by
SAL and are in physical mode with interrupts disabled.
« SAL PMI handler. The execution environment is in physical mode with interrupts disabled.

The following general rules govern the operational characteristics of the SAL procedures:

e SAL runs in privilege level 0 and will return an error if called from other privilege levels.

* SAL runs little endian.
SAL procedures follow the standard IA-64 calling convention. SAL runtime services shall be
implemented completely in the 1A-64 ISA.
SAL procedures are not re-entrant with respect to any runtime service (including itself).
SAL procedures are not MP-safe except for the SAL_MC_RENDEZ, SAL_CACHE_FLUSH
and SAL_CACHE_INIT procedures. The OS is required to enforce single threaded access to
the other SAL procedures.
Architected SAL runtime procedures are called either in virtual or physical mode under the OS
execution environment. OEM specific SAL runtime procedures may not support both virtual
and physical modes of operation.
All SAL procedures that don't return the status of unimplemented procedure (—1), must be
implemented.

Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal OS execution
environment is with translation on and interrupts enabled but OS may choose to call SAL runtime
services in physical mode.

The parameters passed to SAL runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally,gheegister must contain the physical or
virtual address of the SALgp value provided to the OS in the Entrypoint Descriptor (refer to

IA-64 System Abstraction Layer Specification 9-1

intel.

Table 3-4 on page 3-12). SAL can compute the addresses of code and data objects within SAL
using offsetsrelativeto thei p and gp. In other words, SAL code will be position independent.

The hand-off state from the EFI to the OS Loader will indicate the SAL's requirements for virtual
address mappings. (Refer to el Specification for details). In a MP configuration, the virtual
addresses registered by the OS must be valid globally on all the processors in the sydiéih. The
Specification also provides the interfaces for the OS to register the virtual address mappings. Some
typical requirements for virtual address mappings are described below:

1. The code and data areas of PAL and SAL in memory must be mapped contiguously in virtual
address space.

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures in memory. These dependencies are describailénd-1below. Prior to
invoking the SAL procedures in virtual mode, the OS must register the virtual address of the
PAL code space in memory. If SAL needs to invoke a PAL procedure, SAL shall do so in the
same mode in which it was called by the OS (i.e. without changing the PSR.dt, PSR.rt and
PSR.it bits). While invoking these SAL procedures, the OS must provide the appropriate
translation resources required by PAL (i.e. ITR and DTC covering the PAL code area).
However, if a particular PAL procedure needs to be invoked in physical mode, SAL will turn
off translations and then invoke PAL.

3. The SAL_UPDATE_PAL procedure will invoke some PAL procedures in the firmware
address space. The OS must register the virtual address of the firmware address space
(ending at 4 GB). The OS must provide a contiguous virtual address mapping for the entire
firmware address space. If SAL_UPDATE_PAL procedure is called in virtual mode, SAL
will compute the virtual addresses of the relevant PAL procedures in the firmware address
space and shall call the same in virtual mode.

4. The OS must register the virtual addresses of the Firmware Reserved Memory (refer to
Table 3-5 on page 3-)13Such registration must be done prior to making SAL calls in virtual
mode and the OS must provide a contiguous virtual address mapping for each of the data
areas.

Table 9-1. SAL Procedures Invoking PAL Procedures

9.1.2

9-2

SAL Procedures PAL Procedures
SAL_CACHE_FLUSH PAL_CACHE_FLUSH
SAL_GET_STATE_INFO PAL_MC_ERROR_INFO

Access to Resources not Supported by OS

In order to access resources for which the OS does not provide the mapping, SAL runtime services
will access the platform resources in physical addressing mode. This will be done by disabling the
interrupts and turning the data translation off before accessing the platform resources. SAL will
restore the state of the data translation and interrupt enable bits in the PSR after accessing the
device. The following is a suggested code sequence:

nmov r2=psr.| //Save current PSR, |low 32 bits

rsm (1<<14) | (1<<17) /I Mask Interrupt (PSR bit 14) and
//disable data translation (PSR bit 17)

. /1End of instruction group

srlz.d //Serialize

- //End of instruction group

IA-64 System Abstraction Layer Specification

ld/ist....... //Performload/store to platformspecific
/I devi ce using physical address

H /1End of instruction group

nmv psr.l=r2 //Restore original PSR low 32 bits
i //End of instruction group
srlz.d /lSerialize

. //End of instruction group

The code sequence (from rsmto the second srlz.d) must exist in a single page of memory and the
tranglation for this code sequence must exist. The code sequence must not cause any NaT
consumption faults. All the memory accesses in this code sequence must be naturally aligned to
avoid unaligned datareference faults. If disabling of interrupt and data translation are done
separately, interrupts need to be disabled first and then the data translation. The code sequence may
not work if the data translation is disabled first followed by interrupt disabling. The restoring of the
processor state must be done in the reverse order. In general, interrupt and data translation should
be disabled to access the devices in physical mode and then interrupt and data translation must be
re-enabled as soon as possible.

The duration of interrupt and data translation disabled state should be kept at a minimum to
preclude impacting normal OS functions.

9.2 SAL Procedure Summary

Table 9-2. SAL Procedures

Procedure Fun((r:]t;?(; D Description
SAL_SET_VECTORS 0x01000000 | Register software code locations with SAL
SAL_GET_STATE_INFO 0x01000001 | Return Machine State information obtained

by SAL
SAL_GET_STATE_INFO_SIZE 0x01000002 | Obtain size of Machine State information
SAL_CLEAR_STATE_INFO 0x01000003 | Clear Machine State information
SAL_MC_RENDEZ 0x01000004 | Cause the processor to go into a spin loop
within SAL
SAL_MC_SET_PARAMS 0x01000005 | Register the machine check interface layer
with SAL
SAL_REGISTER_PHYSICAL_ 0x01000006 | Register the physical addresses of locations
ADDR needed by SAL
SAL_CACHE_FLUSH 0x01000008 | Flush the instruction or data caches
SAL_CACHE_INIT 0x01000009 | Initialize the instruction and data caches
SAL_PCI_CONFIG_READ 0x01000010 | Read from the PCI configuration space
SAL_PCI_CONFIG_WRITE 0x01000011 | Write to the PCI configuration space
SAL_FREQ_BASE 0x01000012 | Return the base frequency of the platform
SAL_UPDATE_PAL 0x01000020 | Update the contents of firmware blocks

IA-64 System Abstraction Layer Specification 9-3

SAL_CACHE_FLUSH

SAL_CACHE_FLUSH

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

To flush the instruction or data caches.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures
i_or_d Unsigned 64-bit integer denoting type of cache to be flushed:
1 = instruction cache
2 = data cache
3 = instruction & data cache
Other values are reserved
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_CACHE_FLUSH procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Flushes the instruction and/or data caches, at al levels of cache hierarchy, controlled by the
platform and the processor. Thei_or_d parameter specifies the instruction and/or data caches.
Unified caches are flushed with both instruction and data caches. This procedure has the effect of
invalidating al instruction cache lines, or causing awriteback and then invalidating all data cache

lines.

This SAL procedure invokes the PAL procedure, PAL_CACHE_FLUSH. The PAL procedure may
return to SAL without completing the flush operation should there be an intervening interrupt. This
procedure will then re-invoke the PAL call. If interrupts need to be handled on atimely basis, this

SAL procedure must be invoked with interrupts enabled, i.e. PSR.i set to 1.

Requirements: None

9-4

IA-64 System Abstraction Layer Specification

intel.

SAL_CACHE_INIT

SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches.

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode.

Arguments: Argument

Description

func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-3 Call completed with error
-4 Virtual address not registered

Description: Initializestheinstruction and data caches controlled by the platform only. The OSisrequired to
invoke the PAL_CACHE_INIT procedure to initiaize the instruction and data caches within the
processor. All cache lineswill be invalidated without causing a writeback.

Platform
Requirements: None

IA-64 System Abstraction Layer Specification 9-5

SAL_CLEAR_STATE_INFO Intet@

SAL_CLEAR_STATE_INFO

Purpose:

Calling

Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedure is used to invalidate the processor and platform information logged by SAL with
respect to the machine state at the time of MCASs, INITs or CMCs.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:

0 — MCA information
1 - INIT information
2 — CMC information

Other values are reserved
sub-type The type of machine check state information being cleared:

0 — Processor information
1 — Platform information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description

status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This call will invalidate any processor or platform information logged by SAL for the specified
event type. Once the log has been invalidated, any subsequent callsto SAL_GET_STATE_INFO
will get a =5 return value (no information available). In a MP environment, processor log
information pertains to the processor on which this call is executed and the platform log
information pertains to the entire platform.

If an MCA has been logged and the OS fails to invalidate the log prior to another MCA then this
may be considered fatal. For this reason the log will always be invalidated on booting. This means
that the log information should be read as part of the OS_MCA handler.

This procedure enables the OS (and diagnostic software) to invalidate information obtained by
SAL with respect to the machine state at the time of MCAs, INITs and CMCs. By calling this
procedure, the OS signifies the completion of its machine check handling.

Requirements: None

9-6

IA-64 System Abstraction Layer Specification

intel.

SAL_FREQ BASE

SAL_FREQ BASE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This call returns the base frequency of the platform and other clock related information.

Standard. Callable by the OSin physica or virtual mode.

Argument Description

func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures

clock_type Unsigned 64-bit integer specifying the type of clock source:
0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional)
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_FREQ_BASE procedure

clock_freq Frequency information in ticks per second

drift_info Drift value in parts per million clock ticks (optional)

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

This procedure is a runtime interface to determine the platform clock frequencies and to facilitate
the OS in selecting the most accurate clock source. This call could, in turn, use the services of
PAL_FREQ BASE if the processor implementation provides an output that is used as the platform
clock.

The platform base clock frequency (clock freq return parameter for clock_type of 0), in
conjunction with the ratios returned by the PAL_FREQ RATIOS, may be used to determine the
frequencies of the processor, the front side bus and the interval timer within the processor.

This procedure must supply the correct value for the platform base clock frequency (clock_type of
0) and this value returned cannot be -1. Support for the other clock types and drift information is
optional. The valueinthe clock_freq and drift_info fieldsis set to -1 if the requested information is
not available.

Requirements: |A-64 platforms must provide mechanisms to determine the base frequency of the platform.

IA-64 System Abstraction Layer Specification 9-7

SAL_GET_STATE_INFO intet@

SAL_GET_STATE_INFO

Purpose: Provide a programmatic interface to the processor and platform information logged by SAL with
respect to the machine state at the time of the MCAs, INITs or CMCs.

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode.

Arguments: Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:

0 — MCA information
1 - INIT information
2 — CMC information

Other values are reserved
sub-type The type of machine check state information being requested:

0 — Processor information
1 — Platform information
Other values are reserved

memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered
-5 No information available

Description: This procedure enables the OS (and diagnostic software) to gather information obtained by SAL
with respect to the machine state at the time of MCAs, INITs and CMCs.

This call will return any information logged by SAL for the specified event type and sub-type. In
response to the MCA or CMC event, the OS must call this procedure twice to obtain the processor
and/or platform error information that triggered the machine check. The processor information
returned is that of the processor that invoked this procedure. The platforminformation returns error
information for memory and |/O devices.

The OSis expected to call this procedure to retrieve all datarelated to an event. The OS may

retrieve the same information multiple times prior to clearing the log. The log is cleared by the OS
caling SAL_CLEAR_STATE_INFO. Once the log has been cleared, any subsequent calls will get

a -5 return value (no information available). The OS must be prepared to handle the -5 return
value.

The maximum length of the buffer required to hold the requested log information is obtained by
calling the SAL_GET_STATE_INFO_SIZE procedure. The OS is expected to allocate the memory

9-8 IA-64 System Abstraction Layer Specification

Platform

SAL_GET_STATE_INFO

buffer according to the returned size and provide the same for the memaddr argument. SAL returns
as many error logs as would fit into the memory buffer area provided by the memaddr argument.

The information returned in the memaddr argument will contain the error information logged for
the processors, memory controller, and I/O devices (including host bridges) in the system. The
exact format of the logs will be implementation dependent but the log for each type of device will
follow an architected structure to allow the OS to parse the logs and extract the information. Refer
to Appendix C ‘Error Log Structures’ for format of the error log information returned in the
memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedure is
invoked for CMC information, SAL will obtain all the processor error logs from PAL by invoking
the PAL_MC_ERROR_INFO procedure. This procedure will then return both the information
buffered by SAL and the information collected from PAL to the caller.

In a MP environment, processor log information pertains to the processor on which this call is
executed and the platform log information pertains to the entire platform.

If an MCA has been logged and the OS fails to clear the log prior to another MCA then this may be
considered fatal. Hence, the MCA log information should be read as part of the OS_MCA handler.
On the other hand, if a CMC occurs prior to the OS clearing the CMC error log, the same shall not
be fatal. If SAL's internal buffers are not sufficient to log multiple errors of the sgemand

sub-type, SAL shall discard the error logs for the latter occurrences.

SAL's error logs shall be cleared on a re-boot.

Requirements: None

IA-64 System Abstraction Layer Specification 9-9

SAL_GET_STATE_INFO_SIZE

intel.

SAL_GET_STATE_INFO_SIZE

Purpose: This procedure is used to obtain the maximum size of the information logged by SAL with respect
to the machine state at the time of MCAS, INITs or CMCs.

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode.

Arguments: Argument Description
func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL
procedures.
type The type of information being requested:
0 — MCA information
1 — INIT information
2 — CMC information
Other values are reserved
sub-type The type of machine check state information being requested:
0 — Processor information
1 — Platform information
Other values are reserved
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_GET_STATE_INFO_SIZE
size The maximum size of the information logged for the specified type
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Description: Thiscall will return the maximum size of the processor or platform information logged by SAL for
the specified event type and sub-type. The OS must make this call to determine the maximum size
of datalogged by SAL for each type and sub-type of log. The OS may then all ocate suitable buffers,
and provide the pre-allocated buffers as argument to subsequent callsto the
SAL_GET_STATE_INFO procedure.

Platform
Requirements: None.

IA-64 System Abstraction Layer Specification

intel.

SAL_MC_RENDEZ

SAL_MC_RENDEZ

Purpose:

Calling

Conventions:

Arguments:

Returns:

Status:

Description:

This procedure causes the processor to go into aspin loop within SAL where SAL awaits awake up
from the monarch processor.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-3 Call completed with error
-4 Virtual address not registered

This procedure is invoked on nhon-monarch processors during machine check processing. This
procedure will disable interrupts and set an implementation dependent check-in flag within the
SAL dataareato indicate to the monarch processor that the non-monarch processor has reached the
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete al outstanding
transactions within the processor. The non-monarch processor will then go into a spin loop awaiting
awake up signal from the monarch processor. The wake up mechanism may be an external
interrupt or amemory semaphore as set up by the SAL_MC_SET_PARAMS procedure. SAL will
return an error if awake up mechanism has not been registered.

If external interrupt wake up mechanism is chosen, SAL spin loop routine will poll thelocal SAPIC
IRR register for the bit corresponding to the selected rendezvous interrupt to be set.

If amemory semaphore mechanism is chosen, SAL spin loop routine will poll the memory
semaphore for the unique value that includes the contents of the Local 1D Register (refer to

Figure 3-1). The monarch processor will set this value to wake up one non-monarch processor at a
time. SAL on the non-monarch processor will clear the memory semaphoreto zero and return. This
procedure may be called in virtual or physical mode but when memory semaphore mechanism is
chosen, this procedure must be called in the same mode as the previous call to the
SAL_MC_SET_PARAMS procedure that specified the memory semaphore.

The non-monarch processor will enter the spin loop routine and begin polling the wake up
mechanism within 1 second after invocation of this call.

When this procedure returns, it is the responsibility of the OSto clear the IRR bitsfor the
MC_rendezvous interrupt and the wake up interrupt, if any.

IA-64 System Abstraction Layer Specification 9-11

SAL_MC_RENDEZ i nu ®

This procedure is required for MP support. This SAL procedureisrequired to be MP-safe in order
that OS on the various non-monarch processors may enter the idle loop within the SAL
simultaneously.

Platform
Requirements: None

9-12 IA-64 System Abstraction Layer Specification

intel.

SAL_MC_

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

SAL_MC_SET_PARAMS

SET_PARAMS

This procedure allows the OS to specify the interrupt number to be used by SAL to interrupt the OS
during the machine check rendezvous sequence as well as the mechanism to wake up the
non-monarch processors at the end of machine check processing.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures
param_type Unsigned 64-bit integer value for the parameter type of the machine check
interface:
1 =rendezvous interrupt
2 =wake up
Other values are reserved
i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory

address is specified:

1 = interrupt vector

2 = memory address
Other values are reserved

i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory
address associated with the i_or_m parameter specified above.
time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds). The

minimum value is 1 second. Any value less than 1000 defaults to 1000.
Reserved 0

Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedureisrequired for MP support. Section 3.2.2.1 provides details on how the rendezvous
mechanism works in a MP configuration.

There are some machine check conditions which require the other processorsin the system to be
rendezvoused for error containment purposes and to recover from the error condition. This
procedure allows the OS to register the interrupt number it wishesto use for this purpose. Typically,
when the OS on the non-monarch processor receives the rendezvousinterrupt, it will turn around
and call SAL_MC_RENDEZ to go into a SAL spin loop routine. If the OS does not register this
interrupt, SAL_CHECK on the monarch processor will be forced to issue INIT and thereby
compromise the recoverability from the machine check condition. This procedure must be called
before MCAs can be handled by the OS.

The param_type parameter indicates whether the rendezvous interrupt or wake up mechanismis
being specified. If param _typeis 1, thei_or_m parameter isignored.

IA-64 System Abstraction Layer Specification 9-13

SAL_MC_SET_PARAMS inu ®

Platform

Thei_or_m parameter specifies whether an interrupt or memory semaphoreis used. Interrupt isthe
only valid choice for the rendezvous function since the idea s to interrupt the non-monarch
processor as quickly as possible. Either interrupt or memory may be used for the wake up
mechanism and this is OS implementation dependent.

Thei_or_m val parameter specifies the interrupt vector number or the memory address associated
with thei_or_m parameter. If memory addressis used for the wake up mechanism, the memory
semaphore must be aligned on an 8-byte boundary and coherent across the system fabric.

For the interrupt vector, avaue of 0 indicates use of PMI asthe interrupt mechanism. The PMI
interrupt mechanism shall not be employed by |1A-64 OSes as either the rendezvous or the wake-up
interrupt. Only the PAL layer to support A-32 OSes may use the PMI as the rendezvous interrupt
since al the external interrupt vectors may bein use by the |A-32 OS. The SAPIC | Pl message
signaling the MC_rendezvous interrupt of PMI type shall specify avalue of 13 in the vector field
of the IPI message. The PMI interrupt mechanism shall not be employed as the wake-up interrupt
by any OS.

The PMI interrupt mechanism needs to be supported only on platforms that support 1A-32 OSes
and SAL may return an error status on other platforms.

Except for the above, the externa interrupt vector value must be in the range of 16 to 255 since
these are the acceptable values that can be transferred using SAPIC IPl messages. A high value
should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if
not using memory semaphore mechanism). Thisis because the OSis responsible for clearing the
IRR bit associated with the wake up interrupt vector by reading the IVR and if the wake up
interrupt bit is not cleared promptly, alater call to the SAL_MC_RENDEZ procedure may return
prematurely.

This procedure may be called in virtual or physical mode but when thei_or_m parameter specifies
amemory address, subsequent calls to the SAL_MC_RENDEZ must be made in the same mode
(virtual/physical) as this call.

Thetime_out field defines the rendezvous time out period in milliseconds with aminimum value of
1 second. This parameter is only applicable to the param_type of rendezvous interrupt. If the
non-monarch processor does not invoke SAL_MC_RENDEZ within the time out period, the
monarch processor will generate an INIT signal to the non-monarch processor. The time out value
must be sufficient to cover situations where other processors may bein local MCA and thus not be
capable of servicing externa interruptsor INIT.

Requirements: None

9-14

IA-64 System Abstraction Layer Specification

intel.

SAL_PCI_CONFIG_READ

SAL_PCI_CONFIG_READ

Purpose: This procedure is used to read from the PCI configuration space.

Calling

Conventions: Standard. Callable by the OSin virtua or physical mode. Good programming practices dictate
that indexed accesses to the configuration space be serialized in order to be MP-safe.

Arguments: Argument

Description

func_id
address

size

Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value

Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
PCI configuration address:

Bits 0..7 — Register address

Bits 8..10 — Function number

Bits 11..15 — Device number

Bits 16..23 — Bus number

Bits 24..31 — Segment number

Bits 32..63 — Reserved (0)

Must be naturally aligned with respect to the size of the read.
PCI config size (1, 2 or 4 bytes)

0

0

0

0

0

Description

status
value
Reserved
Reserved

Status: Status Value

Return status of SAL_PCI_CONFIG_READ procedure
Value read from config space.

0

0

Description

0
-2
-3
4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: This procedure is a runtime interface used to read from PCI configuration space. The mechanism
for accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges
to implement this mechanism in different ways.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

Platform
Requirements: None

IA-64 System Abstraction Layer Specification 9-15

SAL_PCI_CONFIG_WRITE

SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling

Conventions: Standard. Callable by the OSin virtual or physica mode. Good programming practices dictate that
indexed accesses to the configuration space be seriaized in order to be MP-safe.

Arguments: Argument

Description

func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address:
Bits 0..7 — Register address
Bits 8..10 — Function number
Bits 11..15 — Device number
Bits 16..23 — Bus number
Bits 24..31 — Segment number
Bits 32..63 — Reserved (0)
Must be naturally aligned with respect to the size of the write.
size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Description: This procedure is a runtime interface used to write to PCI configuration space. The mechanism for
accessing PCI configuration space is abstracted by this procedure, thereby alowing host bridges to
implement this mechanism in different ways. This procedure will guarantee the completion of the

writeto the caler.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

Platform
Requirements:None

9-16

IA-64 System Abstraction Layer Specification

intel.

SAL_REGISTER_PHYSICAL_ADDR

SAL_REGISTER_PHYSICAL_ADDR

Arguments: Provide amechanism for software to register the physical addresses of locations needed by SAL

Calling

Conventions: Standard. Callable by the OSin virtua or physical mode.

Arguments: Argument
func_id

phys_entity

p_addr

Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value
status
Reserved
Reserved
Reserved

Status: Status Value

Description

Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL

procedures

The encoded value of the entity whose physical address is registered
0=PAL_PROC

Other values are reserved

64-bit integer value denoting the physical address

0

0

0

0

0

Description

Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
0

0

0

Description

0
-2
-3
4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: This procedure is used by the OSto register the new physical addresses of the PAL_PROC
procedurein memory. If the OSwereto copy PAL proceduresto adifferent memory location (using
the PAL_COPY_PAL procedure), it must register the new PAL_PROC entrypoint address with the
SAL. The SAL layer will then be in a position to invoke the PAL proceduresin physica mode.

The phys_entity argument specifies the entity whose physical addressis being registered with the
SAL and the p_addr argument provides its physical address.

Platform
Requirements: None

IA-64 System Abstraction Layer Specification 9-17

SAL_SET_VECTORS inu ®

SAL_SET_VECTORS

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Provide a mechanism for software to register software dependent code locations with SAL. These
locations are “handlers” or entrypoints where SAL will pass control for the specified event. The
events handled are for the Boot Rendezvous, MCAs and INIT scenarios.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:

0 = Machine Check

1=INIT

2 =BOOT_RENDEZ
3-64 = Reserved

other values are implementation dependent
phys_addr_1 Physical address of the event handler.

gp_1 Global pointer (GP) of the event handler. This field must be a 16-byte aligned
address.

length_1 Size of the event handler procedure in bytes

phys_addr_2 Physical address of the event handler.

gp_2 Global pointer (GP) of the event handler. This field must be a 16-byte aligned
address.

length_2 Size of the event handler procedure in bytes

Return Value Description

status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedure enables the OS (and diagnostic software) to inform firmware whether it is ready to
handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely where to vector for
each case. Since all three events result in having processor execution being controlled by firmware,
firmware requires these software addresses of the OS or diagnostics in order to pass control. The
OS registers thphysical address where the specific handler resides. SAL uses these addresses to
vector to on occurrence of the event.

For the INIT event in an MP configuration, separate arguments must be provided for the first
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The
phys addr_1, gp_1 andlength_1 arguments specify the entrypoint, gp-value and the length
respectively of the OS_INIT procedure for the monarch anghyee addr_2, gp_2 andlength_2
arguments respectively specify the entrypoint, gp-value and the length of the OS_INIT procedure
for the non-monarch processors. The entrypoints within the OS for the monarch and non-monarch
processors could be the same if the OS intends to perform the monarch selection.

The value in the@hys addr_n argument must be 16-byte aligned. Phgs_addr_n argument may
be checked as to whether it points into legal memory space (as opposed to I/O space or firmware

IA-64 System Abstraction Layer Specification

inte|® SAL_SET VECTORS

space). Specifying avalue of 0in the phys_addr_n argument invalidates the event handler
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it is not possible to invaidate only
one of the two entrypoints.

The gp_n field has the physical address of the GP for the event handler to be called by SAL. The
length_n argument contains the length in bytes of the OS procedure (or at least the first level
OS_MCA, OS_INIT, OS BOOT_RENDEZ procedure). If thelength_n argument isnon-zero, SAL
computes and saves the checksum of the OS procedure. If this procedure were invoked in the
virtual addressing mode, the OS must provide read access to the code area for calculating the
checksum. Before invoking the registered OS procedure, SAL shall authenticate the OS code by
verifying its checksum.

Platform
Requirements: None

IA-64 System Abstraction Layer Specification 9-19

SAL_UPDATE_PAL in‘t9|®

SAL_UPDATE_PAL

Purpose:

Calling

Conventions:

Arguments:

Returns:

Status:

Description:

This procedure is used to update the contents of the PAL block in the non-volatile storage device.

Standard. Callable by the OSin virtua or physical mode.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size| Unsigned 64-bit integer value for the size of the scratch buffer in bytes
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req | Size of the scratch buffer needed
Reserved 0
Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update.
-2 Invalid Argument
-3 Call completed with error. See error_code for details
-4 Virtual address not registered
-9 Insufficient scratch buffer provided

This procedure updates the contents of firmware blocks (e.g. PAL_B) in the non-volatile storage
device and revisesthe FIT entries pertaining to the firmware blocks. If checksum isimplemented
for the FIT table, this procedure will also revise the same. This procedureis capable of selecting the
appropriate location in the storage device for the firmware components. In some flash ROM
architectures, updates may not be possible until the following INIT. This scenario is described later.

Before performing update of PAL, this procedure will utilize resources within the processor and/or
PAL to authenticate the contents of the new version of PAL provided by the caller. If the
authentication is unsuccessful, the current PAL contents will be left intact.

The param_buf pointsto a 16-byte aligned data structure in memory with alength of 32 bytes that
describes the new firmware. Thisinformation is organized in the form of alinked list with each
element describing one firmware component. This procedure will update all the specified firmware
components aswell astheir FIT entriesif successful, and none of the firmware components if
errors are encountered. The following table shows the format of each element of the data structure.
Refer to Section 2.5, “Firmware Interface Tabligt explanation of fields within the FIT.

Offset Length Description

0 8 64-bit pointer to the next element (0 if none present)

8 8 64-bit memory address of the update_data_block containing new firmware
contents

16 1 Checksum flag:

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry
17 15 Reserved

IA-64 System Abstraction Layer Specification

||‘]‘te|® SAL_UPDATE_PAL

The update_data_block consists of a header of 64 bytes followed by the code for the firmware
component. The following table shows the contents of the 64 byte header.

Offset Length Description

0 4 Size of the firmware component in bytes including the header (This field
must be a multiple of 16)

4 4 Date of the firmware component in mmddyyyy format: month, day, year
(e.g. 07/18/99 stored as 0x07181999)

8 2 Version number of the firmware component to be stored in its FIT entry

10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)
1 =PAL_B; OxOF = PAL_A

11 5 Reserved

16 8 Firmware Vendor ID

24 40 Reserved

This procedure will locate the PAL_B block on a 32K byte aligned boundary on the storage device.

If the scratch buffer size specified in the scratch_buf_size field isinsufficient, the call will fail with
astatus of —7 and thescrbuf_size req return parameter will specify the size of the scratch buffer
required.

SAL reads the CPU identification registers on all the processors in the system and maintains the
processor stepping information. If the PAL_B component is being updated, SAL will ensure that
the version number of the new PAL_B in tipelate_data_block is compatible with all the

processors on the system else return an datus.

Theerror_code return parameter provides additional information on the failure whestatiie
field contains a value of —3. Following are the definitions forether_code field.

Error Code Description

-1 Version number of supplied PAL firmware is not suitable for one or more
processors in the system

-2 Supplied version of PAL failed the authentication test

-3 Invalid firmware component type

-4 PAL_A firmware not erasable

-5t0 -9 Reserved

-10 Write failure — inability to write to storage device

-11 Erase failure — inability to erase the storage device

-12 Read failure — inability to read the storage device

-13 Insufficient space in the storage device

In some firmware architectures (e.g. flash), writes to a chip or component containing firmware
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL
firmware code for handling machine checks were located on the chip being revised, machine
checks must be masked on all the processors to avoid possible instruction fetch accesses to the
firmware address space. In an MP environment, the OS must rendezvous all the other processors on
the node whose firmware is being updated. At the end of the firmware update, the OS must invoke
the PAL_MC_ERROR_INFO procedure to ascertain whether any machine checks occurred while
they were masked and take corrective actions. The OS must then wake up the rendezvoused
processors and re-enable machine checks. In a multi-node system with multiple copies of firmware,
it may be possible to redirect interrupts to nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash
hardware except immediately following a Reset or INIT. The OS may call this procedure in virtual
mode but it is required to fix the pages containing the new firmware contents in memory, i.e. the OS

IA-64 System Abstraction Layer Specification 9-21

SAL_UPDATE_PAL in‘t9|®

Platform
Requirements:

must not change the contents of the corresponding physical pages until the firmware update is
complete. SAL will be aware of flash architecture restrictions and will perform the usual
authentication steps. If the authentication is successful, SAL will accumulate the physical addresses
of the new firmware contents by executing the TPA instruction. (There may be severa
non-contiguous physical pagesif the OS had called this procedurein virtual mode). SAL will then
return to the OS a status value of 1 requesting awarm reboot. When SAL regains control following
the warm reboot, it will conduct the authentication steps again and, if successful, update the
contents of firmware.

The firmware update is effective on the next reboot. However, after a successful update, firmware
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM
(new code) will be utilized by the machine check and INIT events while the copy in memory (old
code) will be utilized by the OS. The OS may solve this problem either by rebooting the system
following afirmware update, or by updating the memory copy of PAL procedures by invoking the
PAL_COPY_PAL procedure.

If the OS decides to update the memory copy of PAL procedures, there are additional
considerationsin an MP environment:

1. Whiletheruntime copy of PAL isbeing revised (during execution of the PAL_COPY_PAL
procedure), al the processorsin the system must be prevented from executing PAL
proceduresin memory.

2. Themonarch processor, after invoking the PAL_COPY _PAL procedure, must invalidate its
instruction cache by invoking the PAL_CACHE_INIT procedure asit would be
non-coherent with respect to the data cache.

3. The non-monarch processors on being woken up by the monarch processor must invoke the
PAL_COPY _PAL procedure to register the new PAL entrypoints for PAL_PMI and
PAL_FP. The non-monarch processors must do a SRLZ.| instruction to ensure that
modifications to instruction prefetches are observed.

4. If the physical address of the PAL_PROC procedure changes, the OS must register the new
address with SAL by invoking the SAL_REGISTER_PHY SICAL_ADDR procedure.

Platform must provide non-volatile storage space to save firmware components.

IA-64 System Abstraction Layer Specification

intel.

Glossary A

ACPI

AP

API

BIOS

Advanced Configuration and Power Interface Specification.

Application Processor. One of the processors not responsible for system initialization.

Application Programming Interface.

Basic Input/Output System. A collection of routines that includes Power On Self-test
(POST), system configuration and a software layer between the operating system and
hardware. BIOS iswritten in |A-32 instruction set.

Boot Block Support

BSP

BSP

CMC

A hardware and/or software implementation that permitsthe end user to recover PAL/SAL
layers of software into the flash part after the previous flash programming attempt was
accidentally aborted.

Bootstrap Processor. The processor responsible for system initialization.

Backing Store Pointer (AR.BSP).

Corrected Machine Check.

Cold Boot vs. Warm Boot

Cold Boot refers to a hardware/software event that sets al circuitry, including all
processors, system components, add-in cards and control logic, to aninitial state. Warm
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any
or al of the processor(s) on the system to aninitial state. Warm Boot may be triggered by
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not
corrupt any pending cycles. Destructive memory tests are not performed during warm
boot.

Cold Reset vs. Hard Reset

Cold Reset refersto a hardware signal that sets all circuitry, including al processors,
buses, system components, add-in cards and control logic, to aninitial state. Hard Reset is
triggered by a similar hardware signal. Hard Reset differs from Cold Reset in that some
sticky error flags in some system components may not be cleared, thereby allowing
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate
without regard to cycle boundaries and are typically asserted by the RESET pin. Both
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.

IA-64 System Abstraction Layer Specification A-1

intel.

EFI
Extensible Firmware Interface. Firmware that provides a legacy free API interface to the
OS.
EOI
End of Interrupt.
|_—|'
Fault Tolerant.
GP

Global Data Pointer. Every procedure that references statically-allocated data or calls
another procedure requires a pointer to its data segment in the GP register so that it can
access its static data and its linkage tables.

Har dwar e-protected Flash Region
Thisterm refersto apart of the flash storage that is hardware-protected against accidental
erasure. Usualy, thisregion is programmed by the OEM only. The hardware protection
can either be on-chip and/or platform supported hardware.

I A-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software
Developer's Manual.

IA-64
The new | SA with 64-bit instruction capabilities, new performance enhancing features,
and support for the |A-32 instruction set.

IA-64 0S
An operating system which iswritten using the | A-64 code that can run | A-64 applications
(IA-64, 1A-32 code).

INTA

Interrupt Acknowledge.
IPI

Interprocessor Interrupts.
IPL

Initial Program Load.
ISA

Instruction Set Architecture.
IVT

Interrupt Vector Table.
MBR

Master Boot Record.

IA-64 System Abstraction Layer Specification

MC_rendezvous I nterrupt

MCA

An external interrupt vector provided to SAL by the |A-64 OSfor interrupting the |A-64
OS running on the APs.

Machine Check Abort.

Minimal State Save Area

Arearegistered by SAL with PAL for saving minimal processor state during machine
check and INIT processing. This area must be aligned on a 512-byte boundary and must
be in uncacheable memory. See the PAL EASfor details.

Monarch Processor

The processor selected by SAL to accumulate al the platform error logs and continue with
the machine check processing, when multiple processors experience machine checks
simultaneously.

MP
Multiprocessor.
MPS
Multiprocessor Specification.
NTFS
Windows NT File System.
NVM
Non-volatile Memory.
(O
Operating System.
PAL
Processor Abstraction Layer. Firmware that abstracts processor implementation-specific
features.
Plabel
Procedure |abel, areference or pointer to afunction. A plabel takes the form of a pointer to
aspecial descriptor (a plabel descriptor) that uniquely identifies the function. The plabel
descriptor contains the address of the function’s actual entrypoint as well as its linkage
table pointer.
PMI
Platform Management Interrupt.
SAL
System Abstraction Layer. Firmware that abstracts system implementation differences.
SAL_REV

The revision number of the |1A-64 SAL specification supported by the SAL
implementation. This information contains two one-byte fields for Major and Minor

IA-64 System Abstraction Layer Specification A-3

intel.

revision numbers and the same are represented in binary coded decima (BCD) format.
For example, if this variable contains 02h, 06h, the SAL revision is 2.6. The major version
isincremented when the SAL API changes. The minor version isincremented when
underlying functionality changes but the API remains the same. SAL implementations
pertaining to a particular IA-64 SAL revision specification shall be compatible with each
other at the published SAL externa interfaces.

SAPIC
Streamlined Advanced Programmable Interrupt Controller. The code name for the high
performance interrupt architecture for the 64-bit | A-64 1SA extensions to the 32-bit Intel
Architecture (I1A-32). The Local SAPIC resides within the processor and accepts
interrupts sent on the system bus. The I/O SAPI C resides on the 1/0 subsystem and
provides the interrupt input pins on which 1/O devicesinject interrupts into the system.

Sector
Thisterm refersto alogical block of 512 bytes.
SP
Memory Stack Pointer.
Swizzling
This term refers to mapping a 32-bit virtual linear address space into four virtual regions
of the 64-bit virtual address space. Swizzling is defined as:
virtual _address{63} =0
virtual _address{62: 61} = 32-bit_virtual _address{31: 30}
virtual _address{60:32} =0
virtual _address{31: 0} = 32-bit_virtual _address{31: 0}
TLB
Translation Lookaside Buffer.
TSS
Task State Segment.
UsB
Universal Serial Bus.
VHPT
Virtual Hash Page Table.
WBL

Write-back with Limited Speculation.

A-4 IA-64 System Abstraction Layer Specification

intel.

Error

Log Structures B

B.1

B.2

B.2.1

Overview

The goals of the |A-64 Error Log structuresis to keep it generic and flexible enough to be
extensible and to abstract processor or platform implementation dependencies from the OS layers,
at the same time providing as much error information as possible to the OS for error handling
purposes.

Error Log Structure

The error log structure consists of two different components namely processor and platform. Both
the processor and platform error log structures have asimilar header, followed by the actual device
specific (processor or platform) error log info. Since multiple errors are possible, the error log
information will be structured in the form of alinked list of Error Log structures with each entry
describing one error. The last Error Log in the linked list will contain avalue of zero in the
Next_Log field.

Header

The format of the header for both the platform and processor error log is as shown below:

Refer to the Intel® IA-64 Architecture Software Developer’s Mantal explanation of fields not
described in this document.

Offset Field Description

0 NEXTLOG Offset of the next log from the beginning of this structure (O if
none present)

8 LOG_LEN Length of this error log in bytes

12 LOG_TYPE This is an unsigned integer to indicate the type of the log:

0 — Processor log

1 - Platform log

14 OEM_SUB_TYPE Sub type of the log as defined by the OEM

16 TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred

HEADER | NFORMATI ON:

{
NEXT_LOG 8 bytes
LOG LEN 4 bytes
LOG TYPE 2 bytes
OEM_SUB_TYPE 2 bytes
TI ME_STAWP 8 bytes (values in BCD fornat)
Seconds Byte 0O

IA-64 System Abstraction Layer Specification B-1

B.2.2

M nut es
Hour s
Reser ved
Day
Mont h
Year
Century
}

Byt e
Byt e
Byt e
Byt e
Byt e
Byt e
Byt e

~NOoO A WN PP

The Device specific error log follows the header. For processor log, this field will contain an area
that is architected for all | A-64 processors. For platform log, this field will contain information

specific to the hardware implementation.

Processor Specific Error Log

Refer to the Intel® IA-64 Architecture Software Developer’s Mantrl explanation of fields.

PROCESSOR_SPECI FI C_ERROR LOG STRUCTURE

{
VALI DATI ON_BI TS!

8 bytes

PROCESSOR _STATE_PARAVETER VALID BI TBit 0

CACHE_CHECK_ VALID BI T

TLB CHECK _VALID BI T
BUS_CHECK VALID BIT
RESERVED
M NSTATE _VALID BI T
BR_VALID BI T
CR VALID BIT
AR VALID BIT
RR_VALID BIT
FR_VALID BIT
RESERVED
PROCESSOR_STATE_PARAMETER
struct {
CACHE_CHECK_| NFO
CACHE_TARGET_ADDR
} CACHE_ERROR_STRUCT] 6]
TLB_CHECK_| NFO
struct {
BUS_CHECK_| NFO
BUS_REQUESTOR
BUS_RESPONDER
BUS_TARGET
} BUS_ERRCOR_STRUCT

B-2

Bit 1 to 6 (for cache errors 1 to
6)

Bit 7 to 12 (for TLB errors 1 to 6)
Bit 13

Bits 14-31

Bit 32

Bit 33

Bit 34

Bit 35

Bit 36

Bit 37

Bit 38-63

8 bytes

96 bytes2 (for cache errors 1 to 6)
8 bytes

8 bytes

48 bytes (for TLB errors 1 to 6)
32 bytes

8 bytes

8 bytes

8 bytes

8 bytes

1. The amount of state saved by SAL isimplementation dependent and SAL provides validation bitsindicating the

saved state information.

2. Contains afield indicating the level of cache. Refer to Cache Check Fieldsin the Intel® IA-64 Architecture

Software Developer's Manual.

IA-64 System Abstraction Layer Specification

struct { Processor Static |nfornation

Mnimal State Save Info StructureRefer to the Intel® IA-64
Architecture Software Developer’s

Manual
BRs 0-7 64 bytes
CRs 0-127 1024 bytesl?
ARs 0-127 1024 bytes!:?
RRs 0-7 64 bytes
FRs 0-127 2048 bytes
} PSI _STATI C_STRUCT
}

B.2.3 Platform Specific Error Log

PLATFORM_SPECI FI C_ERRCR_LOG STRUCTURE
{

i mpl enentation specific information for nenory and I/ O errors

}

1. The number of Control and Application registers on a processor is processor implementation dependent.

2. Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. This
information is returned by the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile
registersin this data structure.

IA-64 System Abstraction Layer Specification

IA-64 System Abstraction Layer Specification

	1 Introduction
	1.1 Objectives
	1.2 Firmware Model
	1.3 System Abstraction Layer Overview
	1.4 Firmware Entrypoints
	1.4.1 Processor Abstraction Layer Entrypoints
	1.4.2 System Abstraction Layer Entrypoints
	1.4.3 Operating System Entrypoints

	1.5 Related Documents

	2 Platform Requirements
	2.1 Firmware Address Space
	2.2 PAL/SAL ROM Space
	2.3 Simplified Firmware Address Map
	2.4 Firmware Organization using Protected Boot Block
	2.4.1 Firmware Components

	2.5 Firmware Interface Table
	2.6 Resources Required for PC-AT* Compatibility
	2.7 Chipset and Shadowing Requirements
	2.8 Platform Support for Variant Architectural Features
	2.9 Platform Considerations Related to Geographic Location
	2.10 Non-volatile Memory Requirements
	2.11 Miscellaneous Platform Requirements

	3 Boot Sequence
	3.1 Overview of the Code Flow after Hard Reset
	3.1.1 Code Flow during Recovery

	3.1.2 Normal Code Flow
	3.2 SAL_RESET
	3.2.1 Initialization Phase
	3.2.2 Bootstrap Processor Identification Phase in an MP Configuration
	3.2.3 Platform Initialization Phase
	3.2.4 OS Boot Phase
	3.2.5 Firmware to OS Loader Handoff State
	3.2.6 OS_BOOT_RENDEZ
	3.2.7 SAL System Table

	3.3 IA-64 OS Loader Requirements
	3.3.1 Fault Handling
	3.3.2 Memory Management Resources Usage
	3.3.3 Other Restrictions on the OS

	4 Machine Checks
	4.1 SAL_CHECK
	4.1.1 SAL_CHECK Processing Details

	4.2 Corrected Machine Checks
	4.3 OS_MCA
	4.4 Procedures used in Machine Check Handling
	4.5 Machine Checks in MP Configurations
	4.6 OS_MCA Handoff State
	4.6.1 Return from OS_MCA Procedure

	5 Initialization Event
	5.1 SAL_INIT
	5.2 OS_INIT
	5.3 OS_INIT Handoff State
	5.4 Return from OS_INIT Procedure
	5.5 MP INIT Support

	6 Platform Management Interruptions
	6.1 SALE_PMI Overview
	6.2 SALE_PMI Initialization
	6.3 SALE_PMI Processing
	6.4 Special Considerations for Multiprocessor Configurations

	7 IA-32 Support
	7.1 IA-32 Support Model
	7.2 IA-32 Support Requirements
	7.2.1 Resources Supported by SAL
	7.2.2 Overview of IA-32 Support Layer Functionality
	7.2.3 IA-32 Instruction Usage Guidelines
	7.2.4 IA-32 Support Environment
	7.2.5 IA-32 Interruption Handler Support

	8 Calling Conventions
	8.1 SAL Calling Conventions
	8.1.1 Definition of Terms
	8.1.2 Processor State
	8.1.3 System Registers
	8.1.4 General Registers
	8.1.5 Floating-point Registers
	8.1.6 Predicate Registers
	8.1.7 Branch Registers
	8.1.8 Application Special Registers
	8.1.9 Parameter Buffers

	8.2 Software Interface Conventions for SAL Procedures
	8.2.1 Control Flow of the SAL Interface
	8.2.2 Calling Architected/OEM SAL Functions

	9 SAL Procedures
	9.1 SAL Runtime Services Overview
	9.1.1 Invoking SAL Runtime Services in Virtual Mode
	9.1.2 Access to Resources not Supported by OS

	9.2 SAL Procedure Summary

	A Glossary
	B Error Log Structures
	B.1 Overview
	B.2 Error Log Structure
	B.2.1 Header
	B.2.2 Processor Specific Error Log
	B.2.3 Platform Specific Error Log

