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Extraction of time-varying spatio-temporal networks
using parameter-tuned constrained IVA

Suchita Bhinge∗, Rami Mowakeaa, Vince D. Calhoun, and Tülay Adalı

Abstract—Dynamic functional connectivity (dFC) analysis is
an effective way to capture the networks that are functionally
associated and continuously changing over the scanning period.
However, these methods mostly analyze the dynamic associations
across the activation patterns of the spatial networks while
assuming that the spatial networks are stationary. Hence, a model
that allows for the variability in both domains and reduces the
assumptions imposed on the data provides an effective way for
extracting spatio-temporal networks. Independent vector analysis
is a joint blind source separation technique that allows for
estimation of spatial and temporal features while successfully
preserving variability. However, its performance is affected for
higher number of datasets. Hence, we develop an effective
two-stage method to extract time-varying spatial and temporal
features using IVA, mitigating the problems with higher number
of datasets while preserving the variability across subjects and
time. The first stage is used to extract reference signals using
group independent component analysis (GICA) that are used
in a parameter-tuned constrained IVA (pt-cIVA) framework to
estimate time-varying representations of these signals by preserv-
ing the variability through tuning the constraint parameter. This
approach effectively captures variability across time from a large-
scale resting-state fMRI data acquired from healthy controls
and patients with schizophrenia and identifies more function-
ally relevant connections that are significantly different among
healthy controls and patients with schizophrenia, compared with
the widely used GICA method alone.

Index Terms—Blind source separation, connectivity analysis,
dimensionality reduction, fMRI analysis

I. INTRODUCTION

DYNAMIC functional connectivity (dFC) analysis has
emerged due to evidence that the human brain exhibits

changes in functional patterns over the scanning period [1].
A number of studies have shown the presence of multiple
structured patterns corresponding to different functional con-
nectivity in task-related and resting-state functional magnetic
resonance imaging (fMRI) data, see e.g., [2], [3], [4], [5], [6].
Analyzing these connectivity patterns in resting-state data has
enabled the identification of distinct biomarkers in a variety
of disorders such as schizophrenia [7], bipolar disorder [8],
autism [9], [10], post-traumatic stress [11], generalized anxiety
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disorder [12],attention deficit hyperactivity disorder [13] and
mild cognitive impairment [14]. Studies have also shown
changes in functional connectivity patterns in different stages
of development [15] and due to hallucinations [16].

Most dFC analysis techniques examine time-varying as-
sociations among the activation patterns of spatial networks
while assuming that the spatial evolution of the networks
is stationary. However, studies have shown that changes in
functional connectivity patterns imply changes in the spatial
networks [17], [18], [19]. Region of interest (ROI)-based
analyses on resting-state networks (RSNs) have shown better
classification of subjects when variability in both spatial and
temporal domains is considered compared with variability
assumed in either spatial or temporal domain [17], [18]. Dy-
namic mode decomposition (DMD), a spatio-temporal modal
decomposition technique, has demonstrated changes in the
temporal activation of RSNs [19]. Although these techniques
provide interesting results, the use of pre-defined RSNs causes
the estimated functional connectivity to be sensitive to network
selection whereas DMD requires significant dimension reduc-
tion that may restrict the method to estimation of few spatial
components. Hence a more flexible model that simultaneously
captures both time-varying patterns and spatial networks of
the whole brain is desirable. Joint blind source separation
techniques such as group independent component analysis
(GICA) attempt to find a common spatial subspace whereas
techniques such as joint ICA assumes a common temporal
subspace. Independent vector analysis (IVA) relaxes these
assumptions and estimates demixing matrices in order to
decompose the data into dataset-specific time courses and
spatial maps, providing an attractive approach for capturing
spatially varying networks. IVA has been successfully applied
to fMRI data to captue variability in spatial networks of
patients with schizophrenia and healthy controls [20]. The
method proposed in [20] divides each subject’s data into
overlapping windows and performs IVA on this setup treating
each window as a dataset. While this approach successfully
captures the dynamics in the spatial networks, it was limited to
a small number of subjects (20 in the given case) due to curse
of dimensionality to which IVA is susceptible. The flexibility
of IVA comes at a cost that for a fixed number of samples, its
performance degrades with the increase in number of datasets
and number of sources since it requires estimation of high-
dimensional probability density functions in addition to the
increase in number of estimation parameters for the demixing
matrices.

Analysis of fMRI data on a large number of subjects is
common in order to obtain reliable results that can be used
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to make robust inferences. We develop a two-stage procedure
while addressing two important points: (1) use of a flexible
model, like IVA, that captures variability in both spatial and
temporal domain, and (2) address the performance degradation
with high dimensionality in IVA, while preserving the variabil-
ity in both domains for application to large scale fMRI data.
One way to reduce the effect of high dimensionality in IVA
is through the use of reference signals to limit the size of the
solution space. Constrained IVA (cIVA) is a semi-blind source
separation technique that incorporates information regarding
reference signals [21]. However, it requires a user-defined
constraint parameter that controls the influence of the reference
signals on the source estimates. A higher value might constrain
the source estimate more than necessary, thus affecting the
model’s ability to capture variability. Hence, we propose a new
technique, parameter-tuned cIVA (pt-cIVA), to adaptively tune
the constraint parameter to effectively capture the variability
of these reference signals across time points. The two-stage
procedure that includes extraction of reference signals through
a data-driven approach and their use in pt-cIVA, enables us
to capture time-varying features in the temporal and spatial
domain while preserving variability across time windows
and reduce the undesirable effects of high dimensionality by
enabling analysis of each subject at a time.

The remainder of this paper is organized as follows: Section
II introduces IVA and relevant IVA algorithms, followed
by an overview of cIVA. It talks about an algorithm that
jointly accounts higher order statistics (HOS) and second order
statistics (SOS), namely, IVA-L-SOS, that provides a more
suitable model for fMRI data and introduces the adaptive
parameter tuning technique for cIVA. The proposed method
to obtain spatio-temporal dynamics is described in Section III,
Section IV and Section V shows the results on simulated and
resting-state fMRI data.

II. METHODS

IVA is an extension of ICA to multiple datasets and es-
timates source components that are as statistically indepen-
dent as possible within each dataset while accounting for
dependence across datasets. Given M datasets, each comprised
of L components, x[m] ∈ RL, m = 1, . . . ,M , we have,
x[m] = A[m]s[m], m = 1, . . . ,M , where A[m] ∈ RL×L is
the mixing matrix. Given a set of observations, the IVA model
can be written as X[m] = A[m]S[m], X[m] ∈ RL×V , the rows
of S[m] ∈ RL×V are latent sources and V is the number of
samples/voxel. IVA estimates M demixing matrices, W[m],
to compute the source estimates, ŝ[m] = W[m]x[m], by
minimizing the cost function given as [22], [23],

JIVA =

L∑

l=1

[
M∑

m=1

H
(
ŝ
[m]
l

)
− I (ŝl)

]
−

M∑

m=1

log
∣∣∣det W[m]

∣∣∣ ,

(1)
where H

(
ŝ
[m]
l

)
denotes the entropy of the lth source es-

timate for the mth dataset, and I (sl) denotes the mu-
tual information of the lth source component vector (SCV),
ŝTl =

[
ŝ
[1]
l , . . . , ŝ

[M ]
l

]
. The optimization of the cost function

jointly weighs the independence within the dataset through
the entropy term along with the log determinant term and

dependence across the datasets through the mutual information
term. SCV takes into account the dependence across the
datasets and the lth SCV is formed by concatenating the lth
component from all the M datasets as shown in Figure 1. For
multisubject fMRI analysis, the M datasets corresponds to M
subjects, forming an SCV of a similar brain region from M
subjects. In this paper, the M datasets correspond to M time
windows obtained using a sliding-window on a single subject’s
data, yielding an SCV that gives the time-evolution of a brain
region and the corresponding columns of the mixing matrix
are the time courses.
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Ā
[K

]
Y

[1
]

Y
[K

]

bA
[1

]
bA

[K
]

y
m

y
[K

]
m

M
...}

M
[k

]X
=

A
S

X
A

S
P

X
[k

,1
]

X
[k,M

]
X

[k
+

1
,1

]
X

[k
+

1
,M

]

A
[k

,1
]

A
[k,M

]
A

[k
+

1
,1

]
A

[k
+

1
,M

]

Y
[k

,1
]

Y
[k,M

]
Y

[k
+

1
,1

]
Y

[k
+

1
,M

]

1

⇣X
[1

] ⌘
T

⇣X
[K

] ⌘
T

X
[k

]
X̄

[1
]

X̄
[K

]
Ā
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1 p P

Subject k

Subject k + 1 p(Ci) Ktrain ⇥ M

Y[m,k]/
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Ā[m,k]

1

⇣
X[1]

⌘T ⇣
X[K]

⌘T
X[k] X̄[1] X̄[K] Ā[1] Ā[K] Y[1] Y[K]
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1 p P

Subject k

Subject k + 1 p(Ci) Ktrain ⇥ M

Y[m,k]/
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Fig. 1. Given a set of observations, the IVA model is given as X[m] =
A[m]S[m], m = 1, . . . ,M , where A[m] is the mixing matrix and the
rows in S[m], are the latent sources that are dependent across datasets. These
dependent sources are concatenated together to form an SCV.

A. Choice of IVA algorithm

The assumption of a different model for the latent source
distribution has led to the development of different IVA al-
gorithms. IVA-Gaussian (IVA-G) assumes that the underlying
SCVs are multivariate Gaussian [23], and thus only takes SOS
into account and estimates the covariance matrix for each SCV,
Σl ∈ RM×M . IVA-Laplacian (IVA-L) assumes the sources are
multivariate Laplacian distributed [24] and takes only HOS
into account. It assumes there is no second-order correlation
within each SCV, i.e., the covariance matrix is an identity
matrix for all SCVs. Although the assumption of no second-
order correlation favors some applications, in many others,
such as fMRI, it degrades the estimation performance since
fMRI sources exhibit a significant level of correlation across
windows [25], [26]. IVA-GL, another implementation of IVA
that performs IVA-L initialized to the result of IVA-G, is a
popular method for fMRI analysis since it has shown more
robust performance than using IVA-G or IVA-L alone [23]
and since it benefits from the advantages of both algorithms,
although sequentially [26]. Since the SCVs for fMRI applica-
tions correspond to brain regions that have multivariate heavy-
tailed distributions, like the multivariate Laplacian distribution,
with a significant level of correlation across subjects/time
windows, an algorithm that simulateneously exploit the ben-
efits of these algorithms is preferable. In this paper, we use
an IVA algorithm, IVA-L-SOS, that assumes the sources are
multivariate Laplacian distributed, like IVA-L, but also takes
second-order correlation of the SCVs into account, like IVA-G,
for full statistical characterization of a Laplacian multivariate
random vector.
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1) IVA-L-SOS algorithm: The multivariate generalized
Gaussian distribution (MGGD) covers a wide range of uni-
modal distributions by controlling the shape parameter, β, such
as super-Gaussian (β < 1), normal (β = 1) and sub-Gaussian
(β > 1), and assumes second-order correlation within an SCV
[27]. The MGGD is given by,

p(s; Σ, β) =
MΓ(M/2) |Σ|−1/2

π[M/2]Γ(1 + M
2β )21+

M
2β

e−
1
2 [sTΣ−1s]

β

, (2)

where Σ is a positive definite scatter matrix and Γ(·) is the
Gamma function. By setting the shape parameter β to 0.5, the
MGGD distribution is equivalent to a multivariate Laplacian
distribution that accounts for second-order correlation through
Σ and is expressed as,

p(s; Σ) =
Γ(M/2) |Σ|−1/2

2M+1π[M/2]Γ(M)
exp

{
−1

2

√
sTΣ−1s

}
, (3)

where Σ estimated at each iteration. Since fMRI sources are
in general expected to have a super-Gaussian distribution, like
Laplacian [26], and are dependent across subjects/windows,
the IVA-L-SOS model is a good match for fMRI data.

Derivative of (1) with respect to w
[m]
l is given by,

∂JIVA
∂w

[m]
l

= E
{
φ
[m]
l x[m]

}
− u

[m]
l(

u
[m]
l

)T
w

[m]
l

, (4)

where u
[m]
l is a vector such that W̃[m]u

[m]
l = 0, and

W̃[m] is formed by removing the lth row of W[m].
The last term in (1) can be written as

∣∣det
(
W[m]

)∣∣ =∣∣∣∣
(
u
[m]
l

)T
w

[m]
l

∣∣∣∣
√∣∣∣det

(
W̃[m]

(
W̃[m]

))∣∣∣ [28], [23], where
√∣∣∣det

(
W̃[m]

(
W̃[m]

))∣∣∣ is independent of w
[m]
l . The score

function, φ[m]
l , for the IVA-GGD algorithm is given by,

φ(s) =





Γ
(
M+2
2β

)

MΓ
(
M
2β

)





β

βΣ−1s
(
sTΣ−1s

)β−1
, (5)

where the Gamma functions, Γ(M+2
2β ) and Γ

(
M
2β

)
grow at

a rate faster than the exponential function towards infinity
as M increases, leading the score function to be undefined.
Since β = 0.5 provides a better match for fMRI sources
[26], by direct substitution of β = 0.5, which corresponds
to multivariate Laplacian distribution, in (5), we obtain

φ(s) = (M + 1)
0.5 Σ−1s√

sTΣ−1s
,

which also reduces the effect of high dimensionality and
enables a stable version for large M . However, there are other
factors that affect the performance of IVA when the number of
datasets is high. We discuss these factors in the next section.

2) IVA: Negative effect of high dimensionality: Although
IVA provides a desirable framework for capturing time-varying
spatial maps and time courses, and IVA-L-SOS mitigates the
negative effects of large M , IVA requires the estimation of
high-dimensional probability density functions (of dimension

M ) for the SCVs and with increasing number of datasets,
M , and number of sources, L, its performance degrades. It
estimates M demixing matrices of dimension L×L yielding a
total of ML2 parameters. Algorithms such as IVA-G and IVA-
L-SOS exploit second-order correlation and require the estima-
tion of the scatter matrix, Σl ∈ RM×M , l = 1, . . . , L, yielding
L×M(M−1)/2 parameters to be estimated. Thus, the number
of parameters to be estimated increases linearly for W[m] and
quadratically for Σl with respect to the increase in M and
L. Hence, for a fixed number of samples the performance of
IVA degrades when a large number of sources and datasets
is considered. To demonstrate this effect on IVA, we generate
M datasets with L = 3 sources generated from a multivariate
Laplacian distribution with V = 104 samples. The observa-
tions, x[m](v), are obtained using x[m](v) = A[m]s[m](v),
where A[m] ∈ RL×L is generated randomly from a uniform
distribution. We obtain 10 estimates of the demixing matrices,
W[m], using four IVA algorithms: IVA-L, IVA-G, IVA-GL
and IVA-L-SOS. The performance is measured in terms of
joint inter-symbol interference (jISI) [23]. The jISI metric
measures the ability of the algorithm to separate the sources
(0 ≤ jISI ≤ 1), where 0 indicates better separation of
underlying SCVs, i.e., W[m]A[m] = I, ∀m ∈ {1, . . . ,M}.
The average of the jISI metric measured over 50 runs for
each algorithm is shown in Fig. 2. IVA-GL and IVA-L-

2 4 8 16 32 64

Number of datasets
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Fig. 2. Performance of four IVA algorithms, namely, IVA-L, IVA-G, IVA-
GL and IVA-L-SOS, with respect to number of datasets in terms of jISI.
Performance of IVA degrades after a certain number of datasets for a fixed
number of samples and hence cannot be used for large number of datasets
with fixed number of samples.

SOS both have similar performance for a lower number of
datasets since both exploit signal properties that match the
underlying source distribution: HOS and SOS. However, for
IVA-G, IVA-GL and IVA-L the performance degrades at a
faster rate for a large number of datasets as compared with
IVA-L-SOS. The increase in jISI value for IVA-G algorithm
with increase in number of datasets indicates that even for
algorithms that have a convex cost function, as for IVA-G
[23], the performance is affected due to increase in number
of datasets. This indicates that the performance of IVA starts
degrading as the number of samples available to estimate
Q = ML2 + L ×M(M − 1)/2 parameters is approximately
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less than 5Q, hence degrading the estimation of the underlying
sources. The method proposed in [20] performs IVA-GL on
the windowed datasets from all 20 subjects, i.e., a total of 140
datasets, and thus cannot be directly used for large number of
subjects. Hence, we develop a two-stage procedure to reduce
the effect of high dimensionality of IVA by performing pt-
cIVA on windowed datasets of each subject. Before discussing
the pt-cIVA technique, we first introduce the regular cIVA
model in the next section.

B. Constrained IVA with fixed constraint parameter

Data-driven dFC analysis techniques, such as IVA, minimize
the assumptions imposed on the data whereas model-driven
dFC analysis techniques, such as ROI-based methods, make
strong assumptions about the data making them robust to
noise and other artifacts. However, the use of pre-defined
RSNs limits the exploration of possible individual dynamic
characteristics. Semi-blind source separation techniques, such
as cIVA [21], [29], take advantage of the benefits of both
techniques to efficiently capture individual-specific variability
of the features extracted from the group of subjects. The cIVA
method incorporates prior information about the sources into
the IVA model [21] and limits size of the solution space, also
addressing the high dimensionality issue. The cost function
for cIVA is given as,

J = JIVA −
L∑

l=1

1

2γl
(6)

M∑

m=1

{[
max{0, µ[m]

l + γlg(ŝ
[m]
l ,dl)}

]2
− (µ

[m]
l )2

}
,

where µ
[m]
l is the regularization parameter, (1/2γl) is the

penalty parameter and g(ŝ
[m]
l ,dl) is the inequality constraint

function given as,

g(ŝ
[m]
l ,dl) = ρl − ε(ŝ[m]

l ,dl) ≤ 0, (7)

where ŝ
[m]
l =

(
w

[m]
l

)T
x[m] is the estimated component, dl

denotes the reference vector for the lth SCV, sl, ε(·, ·) is a
function that defines the measure of similarity between the
estimated SCV and reference signal, and ρl is the constraint
parameter. One can also constrain the columns of the mixing
matrix and the interested reader can refer to [21] for the
procedure. The definition of the constraint function as in (7)
allows for the use of different dissimilarity functions such
as the inner product, mean square error, mutual information
and correlation. In this paper, we use the absolute value of
Pearson’s correlation coefficient given by,

ε(ŝ
[m]
l ,dl) =

∣∣∣corr
(
ŝ
[m]
l ,dl

)∣∣∣ .

The absolute value of Pearson’s correlation coefficient as a
similarity measure restricts ε(ŝ[m]

l ,dl) to be between 0 and
1, steering ρl ≤ 1. Thus, a higher value of ρl enforces the
estimated source to be exactly similar to the reference signal,
not allowing the reference component to vary across datasets,
whereas a lower value results in the estimated component to
deviate from the reference signal making it to be prone to

noise and other artifacts. Hence, the selection of ρl plays a
crucial role in the performance of the cIVA algorithm. In this
paper we propose an adaptive technique to select the constraint
parameter, namely, pt-cIVA, which we introduce in the next
section.

C. Parameter-tuned constrained IVA (pt-cIVA)

The use of reference signals provides an effective way to
address the high dimensionality issue, however, use of a fixed
value for the constraint parameter does not allow the model
to efficiently capture the variability. We introduce pt-cIVA
method such that it controls the amount of correspondence
between the estimated source and the reference signal. In this
case, the reference signals are the group components estimated
using GICA and exhibit variability across time windows [17],
[18], [19]. Using a fixed constraint parameter controls the
amount of correspondance between the reference signal and
estimated source, and constrains the variability of the reference
signals across time windows. Hence, we adaptively tune the
constraint parameter during the optimization of cIVA. We de-
fine N as the number of constraints, ρn the constraint parame-
ter corresponding to the nth constraint and dn, n = 1, . . . , N,
as the reference signal used to constrain a single source among
the L sources. The adaptive ρ-tuning method selects a value
for ρn from a set of possible values for ρn, denoted as P . We
randomly initialize the demixing matrices, W[m], set µ[m]

n = 0
and γn to a positive scalar value. At each iteration, we obtain
an estimate of the sources, s[m]

l , m = 1, . . . ,M, l = 1, . . . , L
and select the first SCV to be the constrained component
followed by an estimation of µ[m]

n and ρ̂n as given in line
8 and 9 of Algorithm 1, respectively. The update given in line
9 in Algorithm 1 identifies the highest value of ρn from set
P that satisfies the condition in (7) for all M datasets. Hence
the distance of the estimated correlation, ε(·, ·) is computed
from all possible values of ρn from set P , across all datasets,
and the value of ρn with least distance is selected. The new
value of the constraint parameter, ρ̂n, is then used to compute
the gradient, ∂J /∂w

[m]
l , and update the demixing matrix as in

line 9 followed by obtaining a new estimate of the sources. The
process is repeated until the convergence criterion, following
the one proposed in [21], is met. Algorithm 1 describes the pt-
cIVA technique. The parameter tuning technique improves the
estimation of the constraint source at every iteration providing
a better solution as compared with using a fixed ρn at every
iteration.

III. IMPLEMENTATION

In this section, we present the methodology to capture time-
varying spatial and temporal components using pt-cIVA. This
method extracts steady-state representation of functionally
relevant components from all subjects using GICA followed by
performing pt-cIVA on each subject to obtain the time-varying
representations of these components as shown in Figure 3.

A. Extraction of reference signals

GICA is one of the widely used, data-driven techniques
used to extract components that are common across multiple
subjects [30], [25]. Given datasets from K subjects, GICA first
performs subject-level principal component analysis (PCA) in
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Algorithm 1 pt-cIVA
Define set P as possible values for ρn

2: for n = 1, . . . , N do
Randomly initialize demixing matrices,

[
W[1], . . . ,W[M ]

]
and set µ[m]

n = 0, γn to be a positive scalar value
4: Compute ŝ[m] = W[m]x[m], m = 1, . . . ,M

for l = 1, . . . , L do
6: for m = 1, . . . ,M do

if l == 1 then
8: µ

[m]
n = max

{
0, γng

(
ŝ
[m]
l ,dn

)
+ µ

[m]
n

}

ρ̂n = arg minρn∈P

[
minm

{∣∣∣ρn −
∣∣∣corr(ŝ[m]

l ,dn)
∣∣∣
∣∣∣
}M
m=1

]

10: ∂J /∂w
[m]
l = ∂JIVA/∂w

[m]
l − 1

γn

{[
max

{
0, γn

(
ρ̂n − ε(ŝ[m]

l ,dn)
)

+ µ
[m]
n

}]2
−
(
µ
[m]
n

)2}

else
12: ∂JIVA/∂w

[m]
l using (4)

w
[m]
l = w

[m]
l + ∂JIVA/∂w

[m]
l

14: Repeat 3 to 13 until convergence
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Ā
[1

]
Ā
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Ā[m,k]

1

⇣
X[1]

⌘T ⇣
X[K]

⌘T
X[k] X̄[1] X̄[K] Ā[1] Ā[K] Y[1] Y[K]
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Fig. 3. The two-stage method for obtaining time-varying spatial networks and
corresponding time courses. (a) Reference signals are obtained using group
ICA from all subjects. (b) Each subject data is divided into windows and pt-
cIVA is applied on the windowed datasets with features extracted from GICA
used as reference.

order to obtain a lower-dimensional signal subspace. PCA
estimates uncorrelated features in the order of highest variance,
hence the signal subspace corresponds to features that capture
most of the variability across time points and can be re-
ferred to as the steady-state representation of the time-varying
spatial networks. GICA then vertically stacks the subject-
level components from all subjects and performs a second
group-level PCA on this matrix to obtain group-level principal
components, which represent the components that account
for most variability across subjects, i.e., a common signal
subspace. Since PCA estimates uncorrelated components that
separates components using only second-order statistics, ICA
is performed on the group-level principal components in order
to obtain statistically independent spatial features. Among
the estimated independent components (ICs), N functionally

relevant group components, denoted as dn, n = 1, . . . , N ,
are selected for further analysis. The N features are used as
reference signals to obtain the variability of these components
across windows by incorporating them into a sliding window
pt-cIVA framework.

B. Parameter-tuned cIVA

In the second stage, we divide each subject’s data into
M windows of length L with an 50% overlap yielding a
total of MK windows. Considering all the MK windows in
the analysis results in IVA to model MK-dimensional SCVs
resulting in MKL2 and LMK(MK − 1)/2 parameters that
need to be estimated from the fixed V samples. However,
as discussed, the performance of IVA degrades with a large
number of datasets and sources for a fixed number of samples.
Thus, we perform a subject-level analysis to mitigate the
high dimensionality issue by modeling a M -dimensional SCV
instead of a MK-dimensional SCV by performing a subject-
level IVA, where the windowed data from each subject defines
a dataset. Using this setup, IVA also takes advantage of
source dependence across windows since the spatial maps are
expected to change smoothly across windows, thus aligning
the components across windows. The N reference signals,
dn, n = 1, . . . , N , obtained from GICA are used as con-
straints in pt-cIVA to constrain the first SCVs for each subject.
The pt-cIVA technique we introduced in Section II-C enables
since each window to have a different level of correlation
with the constraint and setting a fixed value for the constraint
parameter can deteriorate the estimation of the SCVs as shown
in the simulation examples in Section IV.

IV. SIMULATION RESULTS

We generate M = 5 datasets such that x[m] =
A[m]s[m], m = 1, . . . ,M , where the mixing matrix for each
dataset, A[m] ∈ RL×L, is randomly generated with elements
drawn from a normal distribution with zero mean and unit
variance. The L = 10 SCVs are formed from M -dimensional
SCVs of V = 104 samples. Each SCV is generated from a
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multivariate Laplacian distribution where the scatter matrix,
Σ, has a AR-type correlation structure given as,

Σl =




1 ψ ψ2 . . .
ψ 1 ψ . . .
ψ2 ψ 1 . . .
...

...
...

. . .


 . (8)

Among the 10 SCVs, first five are generated with medium
to high second-order correlation, ψ ∼ U (0.5, 0.9), and the
remaining five with lower second-order correlation, ψ ∼
U (0.2, 0.5). A value of ψ between [0.8, 0.9] models the
components that have low variability across datasets, while
a value of ψ between [0.5, 0.8] models the components that
have high variability. A value of ψ below 0.5 models the
artifactual components. A reference signal is generated such
that it has ρtrue correlation with the average component of
the constrained SCV. We consider three scenarios to test the
performance of our method to cover the range of possibilities:
Scenario A: ρtrue = 0.6; Scenario B: ρtrue = 0.3; and
Scenario C: ρtrue = 0. For each scenario, pt-cIVA is applied
with the set P defined as 0.001, . . . , 0.9, γn = 3 and cIVA with
fixed constraint parameter for 50 runs using the IVA-L-SOS
algorithm. We tested the performance of the pt-cIVA approach
using different values of γl between 1 and 1000, and observed
no change in the performance. In this work, we set γl = 3
following [21]. For cIVA with a fixed constraint parameter,
we vary ρ from 0.001 to 0.9, where ρ = 0.9 corresponds to
stronger influence of the constraint and ρ = 0.001 corresponds
to weaker influence.

We measure the performance of the methods in terms
of jISI, and dissimilarity between the constrained estimated
source and ground truth. The average of the jISI metric
computed over 50 runs for each method is shown in Figure. 4.
For each scenario in Figure. 4, jISI obtained using regular
cIVA increases when the constraint parameter is fixed to a
value above the true parameter value indicating poor separation
of the sources. On the other hand, pt-cIVA demonstrates
lower jISI for all three scenarios indicating good separation
performance. The constraint parameter selected at each IVA
iteration for the three scenarios for all 50 runs is shown
in Figure 5. We can see that the parameter converges to
the true value (indicated by ‘∗’) for all the scenarios. The
true value is computed by plugging in the true constrained
sources, s

[m]
l , into the equation in line 9 of Algorithm 1.

Hence, it is lower than ρtrue for scenarios A and B. In
order to verify if the proposed method accurately estimates
the constrained source across time windows, we measure
the dissimilarity factor, α, between the constrained estimated
source, ŝ

[m]
l , and corresponding ground truth, s

[m]
l , computed

as, α = 1−1/M
∑M
m=1

∣∣∣corr
(
ŝ
[m]
l , s

[m]
l

)∣∣∣. A higher value of
this metric indicates poor estimation of the sources. Figure. 6
shows the dissimilarity factor obtained using regular cIVA
and pt-cIVA for the three scenarios. The estimation of the
constrained component degrades using regular cIVA when
a higher constraint parameter is used whereas the proposed
method has low dissimilarity factor for scenarios A and B.
Noting the lower jISI and dissimilarity factor metric for lower
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Fig. 4. Performance of cIVA with fixed constraint parameter varied from
ρ = 0.001, . . . , 0.9 and pt-cIVA with P ∈ {0.001, . . . , 0.9} in terms of
jISI for the three scenarios. The performance of cIVA with fixed constraint
parameter degrades if the parameter is fixed to value higher than the true
constraint parameter whereas pt-cIVA has low jISI for all three scenarios.
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Fig. 5. Constraint parameter selected at every IVA iteration for all 50 runs
for scenarios A, B and C. The marker ‘∗’ indicates the corresponding true
value of ρ. The estimated constraint parameter using pt-cIVA converges to
the true value for all scenarios.

values of ρ in regular cIVA, it might be initially thought
that cIVA might be preferable rather than pt-cIVA . However,
since in real world applications, one does not know the true
value of the constraint parameter and whether the constraint
is present or not, setting a lower value for ρ might adversely
affect the performance of the estimation. For scenario C, i.e.,
when the constraint is not present, pt-cIVA demonstrates better
performance than regular cIVA for lower values of ρ. At
ρ = 0.001, which is equivalent to performing unconstrained
IVA, the jISI value is similar to that of pt-cIVA, however
the dissimilarity factor is high for all scenarios, indicating
a weaker influence of the constraints on the source. For
scenario C the estimated constraint parameter, ρ̂n, is 0.001,
imposing a weaker constraint on the IVA decomposition. This
is equivalent to performing regular IVA that holds permutation
ambiguity. Thus the dissimilarity factor between the estimated
source and constraint source is high even though the jISI value
is low.
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Fig. 6. Performance of cIVA with fixed constraint parameter varied from ρ = 0.001, . . . , 0.9 and pt-cIVA with P ∈ {0.001, . . . , 0.9} in terms of dissimilarity
factor for (a) Scenario A, (b) Scenario B and (c) Scenario C. For each box, the horizontal red line indicates the median, the top and bottom edges indicate the
75th and 25th percentiles, respectively, the whiskers show the extreme points not considered as outliers and the ’+’ symbol indicate outliers. The dissimilarity
factor of the constrained component is low for pt-cIVA whereas it increases using regular cIVA when a higher constraint parameter is used.

V. IDENTIFICATION OF RESTING-STATE DYNAMICS

We use a large-scale resting-state fMRI data obtained
from the Center for Biomedical Research Excellence (CO-
BRE), which is available on the collaborative infor-
matics and neuroimaging suite data exchange repository
(http://coins.mrn.org/dx) [31], to capture the variability using
the proposed pipeline. This resting-state fMRI data includes
K = 179 subjects: 91 healthy controls (HCs) (average age:
38 ± 12) and 88 patients with schizophrenia (SZs) (average
age: 37 ± 14). For this study, the participants were asked to
keep their eyes open during the entire scanning period. The
resting fMRI data were obtained using a 3-Tesla TIM Trio
Siemens scanner with TE = 29 ms, TR = 2 s, flip angle =
75◦, slice thickness = 3.5 mm, voxel size = 3.75×3.75×4.55
mm3 and slice gap = 1.05 mm. Image scans were obtained
over five minutes with a sampling period of 2 seconds yielding
150 timepoints per subject. We removed the first 6 timepoints
to address T1-effect and each subject’s image data was pre-
processed including motion correction, slice-time correction,
spatial normalization and slightly re-sampled to 3×3×3mm3

yielding 53 × 63 × 46 voxels. We perform masking on each
image volume to remove the non-brain voxels and flatten the
result to form an observation vector of V = 58604 voxels,
giving T = 144 time evolving observations for each subject.
Each subject’s data is normalized to zero mean per time point
and whitened.

In order to extract the reference signals using a data-
driven approach, we perform GICA using the Group ICA for
fMRI (GIFT) toolbox (http://mialab.mrn.org/software/gift) on
the resting-state fMRI data. The number of group compo-
nents are estimated using a modified minimum description
length criterion that accounts for sample dependence [32],
for each subject’s data and the mean (30) plus one standard
deviation (5) across subjects is used as the final number
of estimated group components. ICA using the entropy rate
bound minimization algorithm [33], [34] is used to estimate 35
components/networks. Of these, N = 17 functionally relevant
networks are selected based on visual inspection. These net-
works are categorized into 8 domains: auditory, sensorimotor
(SM), frontal, fronto-parietal (FP), parietal (PAR), default
mode network (DMN), visual (VIS) and cerebellum. The

DMN domain also consists of voxels corresponding to anterior
DMN (ADMN) and insular (INS) regions. The frontal, parietal
and fronto-parietal networks comprise the cognitive control
domain. The FRO domain consists of two networks: FRO1
and FRO2 corresponding to their peak activation in the frontal
cortex situated anterior to the premotor cortex and dorsolateral
prefrontal cortex, respectively. The PAR domain consists of
three networks: PAR1, PAR2 and PAR3, corresponding to
their peak activation in the primary somatosensory cortex,
supramarginal gyrus and somatosensory association cortex,
respectively. The VIS domain consists of two networks: VIS1
and VIS2, corresponding to their peak activation in the lateral
and medial visual cortex, respectively. The components in
each domain and the corresponding number of components
are shown in Figure. 7.

Frontal (2) Fronto-Parietal (2) Parietal (3)

Visual (2) DMN (4)

Cerebellum (2)

Auditory (1) Sensorimotor (1) 

Fig. 7. 17 features are selected from GICA as constraints for pt-cIVA. The
features are categorized into 8 domains: auditory (AUD), sensorimotor (SM),
frontal (FRO), fronto-parietal (FP), parietal (PAR), default mode network
(DMN), visual (VIS) and cerebellum (CB).

Each of these N = 17 components is used as a reference
signal in the pt-cIVA model in order to capture their variation
in both the spatial and temporal domain. For the pt-cIVA
model, we divide each subject’s data into M = 17 windows
of length L = 16 with a 50% overlap, resulting in a total
of MK = 3043 windows. By performing pt-cIVA on each
subject’s data, we reduce the dimensionality of the SCV from
3043 to 17. The first SCV is constrained to be correlated with
one of the 17 group components. The pt-cIVA method using
IVA-L-SOS algorithm, with the set P defined as 0.001, . . . , 0.9
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and γn = 3, is applied on the windowed datasets of each
subject to estimate 10 solutions. Since IVA is an iterative
algorithm, optimization of IVA results in different solutions
depending on the initialization. Hence, in order to select
the most representative run, we perform the method in [35]
to select the most consistent run across multiple runs with
different initializations. This method computes the distance
between solutions obtained for each pair of runs and selects the
runs that has the least average distance. Along with addressing
the issue of high dimensionality by limiting the size of the
solution space, the use of references in IVA also results in
components that are ordered across multiple subject-level IVA
decompositions, thus yielding SCVs that are aligned across
subjects. In order to verify that the estimated constrained
SCVs are ordered across subjects, we visually inspected the
estimated components and observed that these components
were similar to the reference signal. We also inspected the
final constraint parameter for all reference signals and for
all subjects and the range of these values was between 0.4
to 0.9, indicating that the components are ordered as per
the reference signal. The estimated source corresponding to
nth constraint for the kth subject at mth window from the
consistent run is denoted as y

[m,k]
n . The corresponding time

courses at each window are further processed to correct for
quadratic, linear and cubic trends, and low-pass filtered with
a cutoff of 0.15Hz [6]. We obtain M graphs for each subject,
R[m,k], k = 1, . . . ,K, ,m = 1, . . . ,M , using N nodes and
N(N − 1) edges, denoted as r[m,k]n1n2 . The N nodes represent
spatial maps or time courses and an edge defines the Pearson’s
correlation coefficient between the n1th and n2th nodes,
n1, n2 = 1, . . . , N . Thus, we obtain M temporal dFC (tdFC)
and spatial dFC (sdFC) graphs of dimension N×N from time
courses and spatial nodes respectively for each subject.

QUANTIFICATION OF DYNAMICS

A number of studies have focused on identifying biomarkers
that show differences in the HC and SZ groups [36], [37], [38].
We were interested in determining if any of the estimated
spatio-temporal component features would be sensitive to
mental illness. One feature that is of interest is variabil-
ity of functional connectivity and spatial maps [39], [20].
In this paper, we define two metrics: component similarity
and functional connectivity fluctuation, to identify the spatial
components and functional connections that are variable. To
evaluate differences between the HC and SZ groups, we
perform a permutation test on each metric, that is, a non-
parametric statistical test which controls the false alarm rate
under the null hypothesis [40], [41]. The idea of a permutation
test is to determine whether the difference between the two
groups is large enough to reject the null hypothesis that two
groups have identical distributions. The test first obtains the
observed difference between the two groups using the true
labels of the subjects. The labels for the subjects from the
two groups are randomly pooled and a difference statistic
using the new labels is obtained for every permutation of
the labels. A distribution of the calculated differences is
the exact distribution of possible differences under the null
hypothesis. If the observed difference is within 95% of the

exact distribution, then we do not reject the null hypothesis.
This test hence assumes that there are no differences between
the two groups and tests if this hypothesis is true or not. We
use the t-statistic obtained from a two-sample t-test to measure
the difference between the two groups and identify whether a
particular group has higher intensity using the sign of the t-
statistic.

A. Functional connectivity fluctuation
The functional connectivity fluctuation, σ[k]

n1n2 , for each
subject using tdFC and sdFC graphs is computed as follows,

σ[k]
n1n2

=

√√√√ 1

M − 1

M∑

m=1

(
r
[m,k]
n1n2 − c̄[k]n1n2

)2
, (9)

where c̄
[k]
n1n2 = 1

M

∑M
m=1

∣∣∣r[m,k]n1n2

∣∣∣ is the mean of the con-

nectivity metric, r[m,k]n1n2 , computed across M windows for
nodes n1 and n2, and r[m,k]n1n2 denotes the Pearson’s correlation
coefficient between the nodes n1 and n2. Each node represents
a spatial map/time course obtained using pt-cIVA. We also
compute this metric on the tdFC graphs obtained from GICA,
which estimates time courses while assuming the spatial
networks are stationary. The estimated reference signals are
back-reconstructed to estimate subject specific time courses,
and a sliding window of length L = 16 is applied with a
50% overlap yielding M = 17 windows. For each subject,
tdFC graphs are obtained as mentioned above. The mean and
standard deviation of functional connectivity fluctuation metric
across the HC and SZ group are obtained for tdFC graphs
from GICA and proposed approach, and sdFC graphs, and are
provided as supplementary material 1.

The permutation test results on the functional connectivity
fluctuation metric identified a number of distinct and relevant
connections. These also showed lower p-values using the
proposed method as compared with GICA. Figure. 8 shows
the connections identified as significantly different using tdFC:
GICA (Figure. 8(a)), tdFC: pt-cIVA (Figure. 8(b)) and sdFC:
pt-cIVA (Figure. 8(c)). The combined result using tdFC and
sdFC graphs computed from our method suggests lower vari-
ability within the cognitive control network and within the
default mode network for the SZ group. Studies have reported
descreased hemodynamic response in the insula region in
the SZ group causing low variability in this region [42].
Higher variability is observed across components in different
clusters, namely, the visual and cognitive control cluster, visual
and DMN cluster, visual and frontal component, and fronto-
parietal and sensorimotor component for the SZ group. This
variability across brain regions may be due to dysfunction in
the working memory, attention and visual learning [43] and the
tendency of patients with schizophrenia to engage more brain
regions than healthy controls [44]. However, GICA results
identifies higher temporal variability in HC group between
DMN and the frontal component of the cognitive network and
higher variability in the SZ group between visual and auditory
component, and between auditory and sensorimotor compo-
nent. These results suggest that the use of tdFC graphs alone

1Supplementary materials are available in the supporting documents /mul-
timedia tab.
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does not fully characterize the dynamic functional connectivity
and assuming variability in both spatial and temporal domains
results in identification of more distinct biomarkers.

B. Component similarity

In order to quantify the variability of the nth feature for
each subject k, we compute the absolute value of the Pearson’s
correlation coefficient between the nth component at window
m, y

[m,k]
n , and the nth component at window m+1, y

[m+1,k]
n .

Component similarity is then obtained by computing the mean
across all adjacent windows. A higher value of this metric
suggests that the spatial network is less variable. Figure. 8(e)
shows the results for the components that demonstrated sig-
nificant differences (p < 0.05, corrected) using a permutation
test between healthy controls and schizophrenia patients. The
VIS, SM, FP and PAR1 components exhibited less variability
within the HC group whereas the PAR2 component exhibited
less variability in schizophrenia. These components were also
identified as less variable among healthy individuals in a
previous dynamic study [20]. Deficits in visual perception,
attention and motor regions have been previously shown in
schizophrenia, which may lead to variability in these compo-
nents. Figure. 8(f) shows an example of the changes in the
visual component of one subject for whom the stationarity
is estimated as the highest within the HC and SZ groups.
The activated voxels corresponding to the visual component
also shows disrupted activation patterns across time for the
SZ subject. This is consistent with previous work showing
disruptions in the perceptual functions in SZ subjects including
abnormalities of smooth pursuit in this group of subjects [45].

VI. DISCUSSION

In recent years, extracting time-varying spatial and temporal
features has become of interest in neuroimaging studies. IVA
provides a simple linear formulation with minimum assump-
tions and allows for estimation of spatio-temporal features.
However, due to the effect of high dimensionality in IVA, it
has been applied to a small number of subjects. We develop
a technique that reduces the effect of high dimensionality
and extracts time-varying features in both spatial and tem-
poral domain for a large number of subjects. This method
extracts reference signals using GICA followed by pt-cIVA to
extract their variability across time windows through tuning
the constraint parameter. The tuning method effectively cap-
tures the variability of the components across time windows
using simulated data as compared with using regular cIVA. It
also identifies functional connections that differentiate healthy
controls and patients with schizophrenia from a large-scale
fMRI data.

The two-stage procedure allows for flexibility in the use of
different methods for extraction of reference signals. Methods
such as dictionary learning [46] and sparse ICA [47] can
be used to exploit sparsity of the components. Matrix de-
composition techniques such as multiset canonical correlation
analysis (MCCA) [48], population value decomposition [49],
shared dictionary learning [50], joint and individual variation
explained (JIVE) [51] and common orthogonal basis extraction
(COBE) [52] can be used to extract common and individual

features from subjects and used as reference signals for the
second stage.

The success of the proposed method leads to a num-
ber of future directions. Identification of spatial connectivity
states and studying potential gains from analyzing them is
of interest. Studying the ability of the spatial features to
classify subjects can provide a quantification to study the
effectiveness of spatial features. Graph theorotical metrics such
as dynamic connectivity strength, clustering coefficient and
centrality measures can be used to summarize the dynamic
spatial networks [53]. Along with capturing variability of the
features across time windows, the pt-cIVA technique can be
used for applications where the effect of prior information is
unknown. In seed-based analysis, selection of ‘seeds’ is crucial
to the analysis of fMRI data, i.e., incorrect selection of ‘seeds’
may lead to incorrect detection of connectivity. In analysis
of EEG data, prior information regarding target frequencies
is imposed on all subjects without any knowledge about the
presence of these frequencies for each subject. The use of
pt-cIVA model would automatically weigh the influence of
incorrect reference selection.
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Fig. 8. (a-c) Associations that demonstrate significant difference (p < 0.05, corrected) between HC and SZ group. Blue connections indicate higher measures
in controls whereas red indicates higher measure in patients. Thickness of the connection indicates a more significant difference (lower p-value) between HCs
and SZs. More group differentiating and relevant connections with significantly lower p-values are obtained using the proposed method as compared with
GICA. (d) Component similarity of all components. Red indicates the distribution of this metric for the SZ group and blue indicates the distribution of this
metric across HC group. Components that demonstrate significant difference (p < 0.05, corrected) between HC and SZ group are indicated by a triangle. A
blue ‘.’ denotes the corresponding component is less variable in the HC group whereas a red ‘/’ denotes the corresponding component is less variable in the
SZ group. The results indicate that SM, FP, PAR1, and VIS components are less variable in HC whereas PAR2 is less variable in SZ group. (e) Changes in
the visual component (VIS1) for one subject corresponding to lowest variability within the HC group and SZ group. The visual component shows disrupted
activation pattern for the SZ subject as compared with the HC subject.
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